Williams E, Mutlu-Smith M, Alex A, Chin XW, Spires-Jones T, Wang SH. Mid-Adulthood Cognitive Training Improves Performance in a Spatial Task but Does Not Ameliorate Hippocampal Pathology in a Mouse Model of Alzheimer's Disease.
J Alzheimers Dis 2023;
93:683-704. [PMID:
37066912 DOI:
10.3233/jad-221185]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND
Prior experience in early life has been shown to improve performance in aging and mice with Alzheimer's disease (AD) pathology. However, whether cognitive training at a later life stage would benefit subsequent cognition and reduce pathology in AD mice needs to be better understood.
OBJECTIVE
This study aimed to verify if behavioral training in mid-adulthood would improve subsequent cognition and reduce AD pathology and astrogliosis.
METHODS
Mixed-sex APP/PS1 and wildtype littermate mice received a battery of behavioral training, composed of spontaneous alternation in the Y-maze, novel object recognition and location tasks, and spatial training in the water maze, or handling only at 7 months of age. The impact of AD genotype and prior training on subsequent learning and memory of aforementioned tasks were assessed at 9 months.
RESULTS
APP/PS1 mice made more errors than wildtype littermates in the radial-arm water maze (RAWM) task. Prior training prevented this impairment in APP/PS1 mice. Prior training also contributed to better efficiency in finding the escape platform in both APP/PS1 mice and wildtype littermates. Short-term and long-term memory of this RAWM task, of a reversal task, and of a transfer task were comparable among APP/PS1 and wildtype mice, with or without prior training. Amyloid pathology and astrogliosis in the hippocampus were also comparable between the APP/PS1 groups.
CONCLUSION
These data suggest that cognitive training in mid-adulthood improves subsequent accuracy in AD mice and efficiency in all mice in the spatial task. Cognitive training in mid-adulthood provides no clear benefit on memory or on amyloid pathology in midlife.
Collapse