1
|
Xu M, Hu B, Wang Z, Zhu L, Lin J, Wang D. Mathematical derivation and mechanism analysis of beta oscillations in a cortex-pallidum model. Cogn Neurodyn 2024; 18:1359-1378. [PMID: 38826645 PMCID: PMC11143146 DOI: 10.1007/s11571-023-09951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 06/04/2024] Open
Abstract
In this paper, we develop a new cortex-pallidum model to study the origin mechanism of Parkinson's oscillations in the cortex. In contrast to many previous models, the globus pallidus internal (GPi) and externa (GPe) both exert direct inhibitory feedback to the cortex. Using Hopf bifurcation analysis, two new critical conditions for oscillations, which can include the self-feedback projection of GPe, are obtained. In this paper, we find that the average discharge rate (ADR) is an important marker of oscillations, which can divide Hopf bifurcations into two types that can uniformly be used to explain the oscillation mechanism. Interestingly, the ADR of the cortex first increases and then decreases with increasing coupling weights that are projected to the GPe. Regarding the Hopf bifurcation critical conditions, the quantitative relationship between the inhibitory projection and excitatory projection to the GPe is monotonically increasing; in contrast, the relationship between different coupling weights in the cortex is monotonically decreasing. In general, the oscillation amplitude is the lowest near the bifurcation points and reaches the maximum value with the evolution of oscillations. The GPe is an effective target for deep brain stimulation to alleviate oscillations in the cortex.
Collapse
Affiliation(s)
- Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Luyao Zhu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Jiahui Lin
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| |
Collapse
|
2
|
Ma K, Gu H, Jia Y. The neuronal and synaptic dynamics underlying post-inhibitory rebound burst related to major depressive disorder in the lateral habenula neuron model. Cogn Neurodyn 2024; 18:1397-1416. [PMID: 38826643 PMCID: PMC11143169 DOI: 10.1007/s11571-023-09960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 02/11/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
A burst behavior observed in the lateral habenula (LHb) neuron related to major depressive disorder has attracted much attention. The burst is induced from silence by the excitatory N-methyl-D-aspartate (NMDA) synapse or by the inhibitory stimulation, i.e., a post-inhibitory rebound (PIR) burst, which has not been explained clearly. In the present paper, the neuronal and synaptic dynamics for the PIR burst are acquired in a theoretical neuron model. At first, dynamic cooperations between the fast rise of inhibitory γ-aminobutyric acid (GABA) synapse, slow rise of NMDA synapse, and T-type calcium current to evoke the PIR burst are obtained. Similar to the inhibitory pulse stimulation, fast rising GABA current can reduce the membrane potential to a level low enough to de-inactivate the low threshold T-type calcium current to evoke a PIR spike, which can enhance the slow rising NMDA current activated at a time before or after the PIR spike. The NMDA current following the PIR spike exhibits slow decay to induce multiple spikes to form the PIR burst. Such results present a theoretical explanation and a candidate for the PIR burst in real LHb neurons. Then, the dynamical mechanism for the PIR spike mediated by the T-type calcium channel is obtained. At large conductance of T-type calcium channel, the resting state corresponds to a stable focus near Hopf bifurcation and exhibits an "uncommon" threshold curve with membrane potential much lower than the resting membrane potential. Inhibitory modulation induces membrane potential decreased to run across the threshold curve to evoke the PIR spike. At small conductance of the T-type calcium channel, a stable node appears and manifests a common threshold curve with higher membrane potential, resulting in non-PIR phenomenon. The results present the dynamic cooperations between neuronal dynamics and fast/slow dynamics of different synapses for the PIR burst observed in the LHb neuron, which is helpful for the modulations to major depressive disorder.
Collapse
Affiliation(s)
- Kaihua Ma
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China
| | - Yanbing Jia
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000 China
| |
Collapse
|
3
|
Beltrán-Velasco AI, Reiriz M, Uceda S, Echeverry-Alzate V. Lactiplantibacillus (Lactobacillus) plantarum as a Complementary Treatment to Improve Symptomatology in Neurodegenerative Disease: A Systematic Review of Open Access Literature. Int J Mol Sci 2024; 25:3010. [PMID: 38474254 PMCID: PMC10931784 DOI: 10.3390/ijms25053010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
This systematic review addresses the use of Lactiplantibacillus (Lactobacillus) plantarum in the symptomatological intervention of neurodegenerative disease. The existence of gut microbiota dysbiosis has been associated with systemic inflammatory processes present in neurodegenerative disease, creating the opportunity for new treatment strategies. This involves modifying the strains that constitute the gut microbiota to enhance synaptic function through the gut-brain axis. Recent studies have evaluated the beneficial effects of the use of Lactiplantibacillus plantarum on motor and cognitive symptomatology, alone or in combination. This systematic review includes 20 research articles (n = 3 in human and n = 17 in animal models). The main result of this research was that the use of Lactiplantibacillus plantarum alone or in combination produced improvements in symptomatology related to neurodegenerative disease. However, one of the studies included reported negative effects after the administration of Lactiplantibacillus plantarum. This systematic review provides current and relevant information about the use of this probiotic in pathologies that present neurodegenerative processes such as Alzheimer's disease, Parkinson's disease and Multiple Sclerosis.
Collapse
Affiliation(s)
| | | | - Sara Uceda
- Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain; (A.I.B.-V.); (M.R.)
| | - Víctor Echeverry-Alzate
- Psychology Department, School of Life and Nature Sciences, Nebrija University, 28240 Madrid, Spain; (A.I.B.-V.); (M.R.)
| |
Collapse
|
4
|
Gigi I, Senatore R, Marcelli A. The onset of motor learning impairments in Parkinson's disease: a computational investigation. Brain Inform 2024; 11:4. [PMID: 38286886 PMCID: PMC11333672 DOI: 10.1186/s40708-023-00215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
The basal ganglia (BG) is part of a basic feedback circuit regulating cortical function, such as voluntary movements control, via their influence on thalamocortical projections. BG disorders, namely Parkinson's disease (PD), characterized by the loss of neurons in the substantia nigra, involve the progressive loss of motor functions. At the present, PD is incurable. Converging evidences suggest the onset of PD-specific pathology prior to the appearance of classical motor signs. This latent phase of neurodegeneration in PD is of particular relevance in developing more effective therapies by intervening at the earliest stages of the disease. Therefore, a key challenge in PD research is to identify and validate markers for the preclinical and prodromal stages of the illness. We propose a mechanistic neurocomputational model of the BG at a mesoscopic scale to investigate the behavior of the simulated neural system after several degrees of lesion of the substantia nigra, with the aim of possibly evaluating which is the smallest lesion compromising motor learning. In other words, we developed a working framework for the analysis of theoretical early-stage PD. While simulations in healthy conditions confirm the key role of dopamine in learning, in pathological conditions the network predicts that there may exist abnormalities of the motor learning process, for physiological alterations in the BG, that do not yet involve the presence of symptoms typical of the clinical diagnosis.
Collapse
Affiliation(s)
- Ilaria Gigi
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council of Italy (CNR), Via Beato Pellegrino 28, Padova, 35137, Veneto, Italy.
| | - Rosa Senatore
- Natural Intelligent Technologies Ltd, Piazza Vittorio Emanuele 10, Fisciano, 84084, Campania, Italy
| | - Angelo Marcelli
- Department of Information Engineering, Electrical Engineering, and Applied Mathematics (DIEM), University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Campania, Italy
| |
Collapse
|
5
|
Joshi H, Jha BK. 2D dynamic analysis of the disturbances in the calcium neuronal model and its implications in neurodegenerative disease. Cogn Neurodyn 2023; 17:1637-1648. [PMID: 37974576 PMCID: PMC10640547 DOI: 10.1007/s11571-022-09903-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Ca2+ signaling is an essential function of neurons to control synaptic activity, memory formation, fertilization, proliferation, etc. Protein and voltage-dependent calcium channels (VDCCs) maintain an adequate level of calcium concentration ([Ca2+]). An alteration in [Ca2+] leads to the death of the neurons that start the primary symptoms of the disease. The present study deals with cell memory-based mathematical modeling of Ca2+ that is characterized by the presence of protein and VDCC. We developed a two-dimensional Ca2+ neuronal model to study the spatiotemporal behavior of the Ca2+ profile. All principal parameters like buffer concentration, diffusion coefficient, VDCC fluxes, etc. are incorporated in this model. Apposite initial and boundary conditions are applied to the physiology of the problem. We obtained an approximate Ca2+ profile by the fractional integral transform method. The application of obtained results is performed to provide its implications to estimate the [Ca2+] in neurodegenerative disease. It is observed that the protein and VDCC provide a significant impact in the presence of cell memory. The memory of cells shrinks the Ca2+ flow from elevation and provides better results to estimated Ca2+ flow in the disease state.
Collapse
Affiliation(s)
- Hardik Joshi
- Department of Mathematics, LJ Institute of Engineering and Technology, LJ University, Ahmedabad, 382210 India
| | - Brajesh Kumar Jha
- Department of Mathematics, School of Technology, Pandit Deendayal Energy University, Gandhinagar, 382007 India
| |
Collapse
|
6
|
Su F, Wang H, Zu L, Chen Y. Closed-loop modulation of model parkinsonian beta oscillations based on CAR-fuzzy control algorithm. Cogn Neurodyn 2023; 17:1185-1199. [PMID: 37786652 PMCID: PMC10542090 DOI: 10.1007/s11571-022-09820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Closed-loop deep brain stimulation (DBS) can apply on-demand stimulation based on the feedback signal (e.g. beta band oscillation), which is deemed to lower side effects of clinically used open-loop DBS. To facilitate the application of model-based closed-loop DBS in clinical, studies must consider state variations, e.g., variation of desired signal with different movement conditions and variation of model parameters with time. This paper proposes to use the controlled autoregressive (CAR)-fuzzy control algorithm to modulate the pathological beta band (13-35 Hz) oscillation of a basal ganglia-cortex-thalamus model. The CAR model is used to identify the relationship between DBS frequency parameter and beta oscillation power. Then the error between the one-step-ahead predicted beta power of CAR model and the desired value is innovatively used as the input of fuzzy controller to calculate the next step stimulation frequency. Compared with 130 Hz open-loop DBS, the proposed closed-loop DBS method could lower the mean stimulation frequency to 74.04 Hz with similar beta oscillation suppression performance. The Mamdani fuzzy controller is selected because which could establish fuzzy controller rules according to human operation experience. Adding prediction module to closed-loop control improves the accuracy of fuzzy control, compared with proportional-integral control and fuzzy control, the proposed CAR-fuzzy control algorithm has higher tracking reliability, response speed and robustness.
Collapse
Affiliation(s)
- Fei Su
- School of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, 271018 China
| | - Hong Wang
- School of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, 271018 China
| | - Linlu Zu
- School of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, 271018 China
| | - Yan Chen
- Department of Neurology, Shanghai Jiahui International Hospital, Shanghai, 200233 China
| |
Collapse
|
7
|
Nour M, Senturk U, Polat K. Diagnosis and classification of Parkinson's disease using ensemble learning and 1D-PDCovNN. Comput Biol Med 2023; 161:107031. [PMID: 37211002 DOI: 10.1016/j.compbiomed.2023.107031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
In this paper, we proposed a novel approach to diagnose and classify Parkinson's Disease (PD) using ensemble learning and 1D-PDCovNN, a novel deep learning technique. PD is a neurodegenerative disorder; early detection and correct classification are essential for better disease management. The primary aim of this study is to develop a robust approach to diagnosing and classifying PD using EEG signals. As the dataset, we have used the San Diego Resting State EEG dataset to evaluate our proposed method. The proposed method mainly consists of three stages. In the first stage, the Independent Component Analysis (ICA) method has been used as the pre-processing method to filter out the blink noises from the EEG signals. Also, the effect of the band showing motor cortex activity in the 7-30 Hz frequency band of EEG signals in diagnosing and classifying Parkinson's disease from EEG signals has been investigated. In the second stage, the Common Spatial Pattern (CSP) method has been used as the feature extraction to extract useful information from EEG signals. Finally, an ensemble learning approach, Dynamic Classifier Selection (DCS) in Modified Local Accuracy (MLA), has been employed in the third stage, consisting of seven different classifiers. As the classifier method, DCS in MLA, XGBoost, and 1D-PDCovNN classifier has been used to classify the EEG signals as the PD and healthy control (HC). We first used dynamic classifier selection to diagnose and classify Parkinson's disease (PD) from EEG signals, and promising results have been obtained. The performance of the proposed approach has been evaluated using the classification accuracy, F-1 score, kappa score, Jaccard score, ROC curve, recall, and precision values in the classification of PD with the proposed models. In the classification of PD, the combination of DCS in MLA achieved an accuracy of 99,31%. The results of this study demonstrate that the proposed approach can be used as a reliable tool for early diagnosis and classification of PD.
Collapse
Affiliation(s)
- Majid Nour
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Umit Senturk
- Department of Computer Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey.
| | - Kemal Polat
- Department of Electrical and Electronics Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey.
| |
Collapse
|
8
|
Chen M, Zhu Y, Zhang R, Yu R, Hu Y, Wan H, Yao D, Guo D. A model description of beta oscillations in the external globus pallidus. Cogn Neurodyn 2023; 17:477-487. [PMID: 37007193 PMCID: PMC10050307 DOI: 10.1007/s11571-022-09827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
The external globus pallidus (GPe), a subcortical nucleus located in the indirect pathway of the basal ganglia, is widely considered to have tight associations with abnormal beta oscillations (13-30 Hz) observed in Parkinson's disease (PD). Despite that many mechanisms have been put forward to explain the emergence of these beta oscillations, however, it is still unclear the functional contributions of the GPe, especially, whether the GPe itself can generate beta oscillations. To investigate the role played by the GPe in producing beta oscillations, we employ a well described firing rate model of the GPe neural population. Through extensive simulations, we find that the transmission delay within the GPe-GPe pathway contributes significantly to inducing beta oscillations, and the impacts of the time constant and connection strength of the GPe-GPe pathway on generating beta oscillations are non-negligible. Moreover, the GPe firing patterns can be significantly modulated by the time constant and connection strength of the GPe-GPe pathway, as well as the transmission delay within the GPe-GPe pathway. Interestingly, both increasing and decreasing the transmission delay can push the GPe firing pattern from beta oscillations to other firing patterns, including oscillation and non-oscillation firing patterns. These findings suggest that if the transmission delays within the GPe are at least 9.8 ms, beta oscillations can be produced originally in the GPe neural population, which also may be the origin of PD-related beta oscillations and should be regarded as a promising target for treatments for PD.
Collapse
Affiliation(s)
- Mingming Chen
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Yajie Zhu
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Rui Zhang
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Renping Yu
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Yuxia Hu
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Hong Wan
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
| | - Dezhong Yao
- Henan Key Laboratory of Brain Science and Brain–Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, 450001 People’s Republic of China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
- School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| |
Collapse
|
9
|
Zorina SA, Jurja S, Mehedinti M, Stoica AM, Chita DS, Floris SA, Axelerad A. Infectious Microorganisms Seen as Etiologic Agents in Parkinson’s Disease. Life (Basel) 2023; 13:life13030805. [PMID: 36983960 PMCID: PMC10053287 DOI: 10.3390/life13030805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Infections represent a possible risk factor for parkinsonism and Parkinson’s disease (PD) based on information from epidemiology and fundamental science. The risk is unclear for the majority of agents. Moreover, the latency between infection and PD seems to be very varied and often lengthy. In this review, the evidence supporting the potential involvement of infectious microorganisms in the development of Parkinson’s disease is examined. Consequently, it is crucial to determine the cause and give additional treatment accordingly. Infection is an intriguing suggestion regarding the cause of Parkinson’s disease. These findings demonstrate that persistent infection with viral and bacterial microorganisms might be a cause of Parkinson’s disease. As an initiating factor, infection may generate a spectrum of gut microbiota dysbiosis, engagement of glial tissues, neuroinflammation, and alpha-synuclein accumulation, all of which may trigger and worsen the onset in Parkinson’s disease also contribute to its progression. Still uncertain is the primary etiology of PD with infection. The possible pathophysiology of PD infection remains a matter of debate. Furthermore, additional study is required to determine if PD patients develop the disease due to infectious microorganisms or solely since they are more sensitive to infectious causes.
Collapse
Affiliation(s)
- Stuparu Alina Zorina
- Department of Neurology, ‘St. Andrew’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania; (S.A.Z.)
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| | - Sanda Jurja
- Department of Ophthalmology, ‘St. Andrew’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
- Department of Ophthalmology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
- Correspondence:
| | - Mihaela Mehedinti
- Department of Morphological and Functional Science, University of Medicine and Pharmacy, “Dunarea de Jos”, 800017 Galati, Romania
| | - Ana-Maria Stoica
- Department of Ophthalmology, ‘St. Andrew’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
- Department of Ophthalmology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| | - Dana Simona Chita
- Department of Neurology, Faculty of General Medicine and Pharmacy, “Vasile Goldis” Western University of Arad, 310045 Arad, Romania
| | - Stuparu Alexandru Floris
- Department of Orthopedy and Traumatology, ‘St. Andrew’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Any Axelerad
- Department of Neurology, ‘St. Andrew’ County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania; (S.A.Z.)
- Department of Neurology, General Medicine Faculty, ‘Ovidius’ University, 900470 Constanta, Romania
| |
Collapse
|
10
|
Soni D, Kumar P. GSK-3β-mediated regulation of Nrf2/HO-1 signaling as a new therapeutic approach in the treatment of movement disorders. Pharmacol Rep 2022; 74:557-569. [PMID: 35882765 DOI: 10.1007/s43440-022-00390-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Movement disorders are neurological conditions characterized by involuntary motor movements, such as dystonia, ataxia, chorea myoclonus, tremors, Huntington's disease (HD), and Parkinson's disease (PD). It is classified into two categories: hypokinetic and hyperkinetic movements. Globally, movement disorders are a major cause of death. The pathophysiological process is initiated by excessive ROS generation, mitochondrial dysfunction, neuroinflammation, and neurotransmitters imbalance that lead to motor dysfunction in PD and HD patients. Several endogenous targets including Nrf2 maintain oxidative balance in the body. Activation of Nrf2 signaling is regulated by the enzyme glycogen synthase kinase (GSK-3β). In the cytoplasm, inhibition of GSK-3β regulates cellular proliferation, homeostasis, and apoptotic process by stimulating the nuclear factor erythroid 2 (Nrf2) pathway which is involved in the elevation of the cellular antioxidant enzymes which controls the ROS generation. The activation of Nrf2 increases the expression of antioxidant response elements (ARE), such as (Hemeoxygenase-1) HO-1, which decreases excessive cellular stress, mitochondrial dysfunction, apoptosis, and neuronal degeneration, which is the major cause of motor dysfunction. The present review explores the GSK-3β-mediated neuroprotection in various movement disorders through the Nrf2/HO-1 antioxidant pathway. This review provides a link between GSK-3β and the Nrf2/HO-1 signaling pathway in the treatment of PD and HD. In addition to that it highlights various GSK-3β inhibitors and the Nrf2/HO-1 activators, which exert robust neuroprotection against motor disorders. Therefore, the present review will help in the discovery of new therapy for PD and HD patients.
Collapse
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
11
|
Ma H, Jia B, Li Y, Gu H. Excitability and Threshold Mechanism for Enhanced Neuronal Response Induced by Inhibition Preceding Excitation. Neural Plast 2021; 2021:6692411. [PMID: 33531892 PMCID: PMC7837794 DOI: 10.1155/2021/6692411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022] Open
Abstract
Postinhibitory facilitation (PIF) of neural firing presents a paradoxical phenomenon that the inhibitory effect induces enhancement instead of reduction of the firing activity, which plays important roles in sound location of the auditory nervous system, awaited theoretical explanations. In the present paper, excitability and threshold mechanism for the PIF phenomenon is presented in the Morris-Lecar model with type I, II, and III excitabilities. Firstly, compared with the purely excitatory stimulations applied to the steady state, the inhibitory preceding excitatory stimulation to form pairs induces the firing rate increased for type II and III excitabilities instead of type I excitability, when the interval between the inhibitory and excitatory stimulation within each pair is suitable. Secondly, the threshold mechanism for the PIF phenomenon is acquired. For type II and III excitabilities, the inhibitory stimulation induces subthreshold oscillations around the steady state. During the middle and ending phase of the ascending part and the beginning phase of the descending part within a period of the subthreshold oscillations, the threshold to evoke an action potential by an excitatory stimulation becomes weaker, which is the cause for the PIF phenomenon. Last, a theoretical estimation for the range of the interval between the inhibitory and excitatory stimulation for the PIF phenomenon is acquired, which approximates half of the intrinsic period of the subthreshold oscillations for the relatively strong stimulations and becomes narrower for the relatively weak stimulations. The interval for the PIF phenomenon is much shorter for type III excitability, which is closer to the experiment observation, due to the shorter period of the subthreshold oscillations. The results present the excitability and threshold mechanism for the PIF phenomenon, which provide comprehensive and deep explanations to the PIF phenomenon.
Collapse
Affiliation(s)
- Hanqing Ma
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Bing Jia
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Yuye Li
- College of Mathematics and Computer Science, Chifeng University, Chifeng 024000, China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| |
Collapse
|