1
|
Zhang Y, Zhang Z, Du F, Song J, Huang S, Mao J, Xiang W, Wang F, Liang Y, Chen W, Lin Y, Han C. Shared oscillatory mechanisms of alpha-band activity in prefrontal regions in eyes open and closed state using a portable EEG acquisition device. Sci Rep 2024; 14:26719. [PMID: 39496816 PMCID: PMC11535223 DOI: 10.1038/s41598-024-78173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
Alpha oscillations are associated with various psychiatric disorders, with many studies focusing on the prefrontal cortex, where transcranial alternating current stimulation (TACS) is applied in the alpha frequency band. This approach often involves selecting individualized alpha frequencies to resonate with their endogenous alpha oscillations. While strong alpha oscillations (8-13 Hz) are typically induced when the eyes are closed, they can also occur during the resting state with eyes open. However, it remains unclear whether these alpha oscillations share a common neural generation mechanism. Exploring which of these alpha oscillations is more suitable as a stable alpha peak frequency is a question of significant interest. Therefore, to systematically study this issue, we specifically collected resting-state electroencephalographic (EEG) data from the prefrontal region of 40 individuals, under both eyes-open and closed- eye conditions, with multiple follow-ups extending up to nine months. Through spectral analysis on each person's entire dataset and averaging the results, we observed a significant positive correlation between the alpha-band power in the eyes-open and the eyes-closed states, in terms of both absolute power and relative power. Further analysis revealed that this correlation was primarily contributed by the periodic activity within the alpha band. Upon modelling the oscillatory components, we discovered distinct differences in the oscillatory characteristics-such as number of the alpha sub-oscillations between the eyes-open state and the eyes-closed state. Our study is the first to systematically explored the relationship between alpha oscillations in the prefrontal cortex in the eyes-open and eyes-closed states, identifying both shared part of the neural generation mechanism and some distinct neural mechanisms that are unique to each state.
Collapse
Affiliation(s)
- Yu Zhang
- School of International Police Studies, The People's Public Security University of China, Beijing, China
| | - Zhizhen Zhang
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, USA
| | - Fang Du
- School of International Police Studies, The People's Public Security University of China, Beijing, China
| | - Jiayuan Song
- School of International Police Studies, The People's Public Security University of China, Beijing, China
| | - Shaojia Huang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Jidong Mao
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Weiwen Xiang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Fang Wang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Yuping Liang
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Wufang Chen
- Shenzhen Shuimu AI Technology Co., Ltd, Shenzhen, China
| | - Yuchen Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Zheng T, Sugino M, Jimbo Y, Ermentrout GB, Kotani K. Analyzing top-down visual attention in the context of gamma oscillations: a layer- dependent network-of- networks approach. Front Comput Neurosci 2024; 18:1439632. [PMID: 39376575 PMCID: PMC11456483 DOI: 10.3389/fncom.2024.1439632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Top-down visual attention is a fundamental cognitive process that allows individuals to selectively attend to salient visual stimuli in the environment. Recent empirical findings have revealed that gamma oscillations participate in the modulation of visual attention. However, computational studies face challenges when analyzing the attentional process in the context of gamma oscillation due to the unstable nature of gamma oscillations and the complexity induced by the layered fashion in the visual cortex. In this study, we propose a layer-dependent network-of-networks approach to analyze such attention with gamma oscillations. The model is validated by reproducing empirical findings on orientation preference and the enhancement of neuronal response due to top-down attention. We perform parameter plane analysis to classify neuronal responses into several patterns and find that the neuronal response to sensory and attention signals was modulated by the heterogeneity of the neuronal population. Furthermore, we revealed a counter-intuitive scenario that the excitatory populations in layer 2/3 and layer 5 exhibit opposite responses to the attentional input. By modification of the original model, we confirmed layer 6 plays an indispensable role in such cases. Our findings uncover the layer-dependent dynamics in the cortical processing of visual attention and open up new possibilities for further research on layer-dependent properties in the cerebral cortex.
Collapse
Affiliation(s)
- Tianyi Zheng
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Masato Sugino
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - G. Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kiyoshi Kotani
- Department of Human and Engineered Environmental Studies, The University of Tokyo, Chiba, Japan
| |
Collapse
|
3
|
Menesse G, Torres JJ. Information dynamics of in silico EEG Brain Waves: Insights into oscillations and functions. PLoS Comput Biol 2024; 20:e1012369. [PMID: 39236071 PMCID: PMC11407780 DOI: 10.1371/journal.pcbi.1012369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/17/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024] Open
Abstract
The relation between electroencephalography (EEG) rhythms, brain functions, and behavioral correlates is well-established. Some physiological mechanisms underlying rhythm generation are understood, enabling the replication of brain rhythms in silico. This offers a pathway to explore connections between neural oscillations and specific neuronal circuits, potentially yielding fundamental insights into the functional properties of brain waves. Information theory frameworks, such as Integrated Information Decomposition (Φ-ID), relate dynamical regimes with informational properties, providing deeper insights into neuronal dynamic functions. Here, we investigate wave emergence in an excitatory/inhibitory (E/I) balanced network of integrate and fire neurons with short-term synaptic plasticity. This model produces a diverse range of EEG-like rhythms, from low δ waves to high-frequency oscillations. Through Φ-ID, we analyze the network's information dynamics and its relation with different emergent rhythms, elucidating the system's suitability for functions such as robust information transfer, storage, and parallel operation. Furthermore, our study helps to identify regimes that may resemble pathological states due to poor informational properties and high randomness. We found, e.g., that in silico β and δ waves are associated with maximum information transfer in inhibitory and excitatory neuron populations, respectively, and that the coexistence of excitatory θ, α, and β waves is associated to information storage. Additionally, we observed that high-frequency oscillations can exhibit either high or poor informational properties, potentially shedding light on ongoing discussions regarding physiological versus pathological high-frequency oscillations. In summary, our study demonstrates that dynamical regimes with similar oscillations may exhibit vastly different information dynamics. Characterizing information dynamics within these regimes serves as a potent tool for gaining insights into the functions of complex neuronal networks. Finally, our findings suggest that the use of information dynamics in both model and experimental data analysis, could help discriminate between oscillations associated with cognitive functions and those linked to neuronal disorders.
Collapse
Affiliation(s)
- Gustavo Menesse
- Department of Electromagnetism and Physics of the Matter & Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, Spain
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Joaquín J Torres
- Department of Electromagnetism and Physics of the Matter & Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Peng J, Zikereya T, Shao Z, Shi K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front Neurosci 2024; 18:1441002. [PMID: 39211436 PMCID: PMC11358111 DOI: 10.3389/fnins.2024.1441002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Beta-band activity in the sensorimotor cortex is considered a potential biomarker for evaluating motor functions. The intricate connection between the brain and muscle (corticomuscular coherence), especially in beta band, was found to be modulated by multiple motor demands. This coherence also showed abnormality in motion-related disorders. However, although there has been a substantial accumulation of experimental evidence, the neural mechanisms underlie corticomuscular coupling in beta band are not yet fully clear, and some are still a matter of controversy. In this review, we summarized the findings on the impact of Beta-band corticomuscular coherence to multiple conditions (sports, exercise training, injury recovery, human functional restoration, neurodegenerative diseases, age-related changes, cognitive functions, pain and fatigue, and clinical applications), and pointed out several future directions for the scientific questions currently unsolved. In conclusion, an in-depth study of Beta-band corticomuscular coupling not only elucidates the neural mechanisms of motor control but also offers new insights and methodologies for the diagnosis and treatment of motor rehabilitation and related disorders. Understanding these mechanisms can lead to personalized neuromodulation strategies and real-time neurofeedback systems, optimizing interventions based on individual neurophysiological profiles. This personalized approach has the potential to significantly improve therapeutic outcomes and athletic performance by addressing the unique needs of each individual.
Collapse
Affiliation(s)
| | | | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| |
Collapse
|
5
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
6
|
Shi C, Zhang C, Chen JF, Yao Z. Enhancement of low gamma oscillations by volitional conditioning of local field potential in the primary motor and visual cortex of mice. Cereb Cortex 2024; 34:bhae051. [PMID: 38425214 DOI: 10.1093/cercor/bhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Volitional control of local field potential oscillations in low gamma band via brain machine interface can not only uncover the relationship between low gamma oscillation and neural synchrony but also suggest a therapeutic potential to reverse abnormal local field potential oscillation in neurocognitive disorders. In nonhuman primates, the volitional control of low gamma oscillations has been demonstrated by brain machine interface techniques in the primary motor and visual cortex. However, it is not clear whether this holds in other brain regions and other species, for which gamma rhythms might involve in highly different neural processes. Here, we established a closed-loop brain-machine interface and succeeded in training mice to volitionally elevate low gamma power of local field potential in the primary motor and visual cortex. We found that the mice accomplished the task in a goal-directed manner and spiking activity exhibited phase-locking to the oscillation in local field potential in both areas. Moreover, long-term training made the power enhancement specific to direct and adjacent channel, and increased the transcriptional levels of NMDA receptors as well as that of hypoxia-inducible factor relevant to metabolism. Our results suggest that volitionally generated low gamma rhythms in different brain regions share similar mechanisms and pave the way for employing brain machine interface in therapy of neurocognitive disorders.
Collapse
Affiliation(s)
- Chennan Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Chenyu Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Zhimo Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
7
|
Yang Y, Yang Z, Lv M, Jia A, Li J, Liao B, Chen J, Wu Z, Shi Y, Xia Y, Yao D, Chen K. Morphological disruption and visual tuning alterations in the primary visual cortex in glaucoma (DBA/2J) mice. Neural Regen Res 2024; 19:220-225. [PMID: 37488870 PMCID: PMC10479843 DOI: 10.4103/1673-5374.375341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 04/01/2023] [Indexed: 07/26/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, and previous studies have shown that, in addition to affecting the eyes, it also causes abnormalities in the brain. However, it is not yet clear how the primary visual cortex (V1) is altered in glaucoma. This study used DBA/2J mice as a model for spontaneous secondary glaucoma. The aim of the study was to compare the electrophysiological and histomorphological characteristics of neurons in the V1 between 9-month-old DBA/2J mice and age-matched C57BL/6J mice. We conducted single-unit recordings in the V1 of light-anesthetized mice to measure the visually induced responses, including single-unit spiking and gamma band oscillations. The morphology of layer II/III neurons was determined by neuronal nuclear antigen staining and Nissl staining of brain tissue sections. Eighty-seven neurons from eight DBA/2J mice and eighty-one neurons from eight C57BL/6J mice were examined. Compared with the C57BL/6J group, V1 neurons in the DBA/2J group exhibited weaker visual tuning and impaired spatial summation. Moreover, fewer neurons were observed in the V1 of DBA/2J mice compared with C57BL/6J mice. These findings suggest that DBA/2J mice have fewer neurons in the V1 compared with C57BL/6J mice, and that these neurons have impaired visual tuning. Our findings provide a better understanding of the pathological changes that occur in V1 neuron function and morphology in the DBA/2J mouse model. This study might offer some innovative perspectives regarding the treatment of glaucoma.
Collapse
Affiliation(s)
- Yin Yang
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhaoxi Yang
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Maoxia Lv
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Ang Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Junjun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Baitao Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Jing’an Chen
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, Sichuan Province, China
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhengzheng Wu
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yi Shi
- Health Management Center, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan Province, China
| | - Yang Xia
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Dezhong Yao
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, Sichuan Province, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ke Chen
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, Medical School, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
8
|
Wang J, Zhao X, Bi Y, Jiang S, Sun Y, Lang J, Han C. Executive function elevated by long term high-intensity physical activity and the regulation role of beta-band activity in human frontal region. Cogn Neurodyn 2023; 17:1463-1472. [PMID: 37974584 PMCID: PMC10640436 DOI: 10.1007/s11571-022-09905-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
The importance of physical activity (PA) to people's health has become a consensus around the world, and regular long-term PA has been accepted as an alternative preventive measure for many chronic medical conditions. Although the daily PA have several benefits for the public, the systematic research on its effect in human physiology, cognition and cerebral nerve level is not fully studied. Hence, in this study, we aim to investigate this question in several specific aspects: basal heart rate, executive function, and neural oscillatory activity in the brain. A total of 146 subjects participated in this study and they were divided into two groups. One group (SG) is the long-term training (more than 8 years) subjects in soccer (n = 31), and the other group (CG) is a normal control group (n = 115). The heart rate was monitored with a portable equipment. Besides, 24 subjects (14 in SG and 10 in CG) participated the Go/No-Go task and EEG recording before and after exercise fatigue task. In the physiology level, we found that in the non-training time, the heart rate in CG group is significantly higher than that of the SG group (P < 0.001). In the cognition level, we found that the SG group has a faster reaction time that that of CG group (P < 0.01), while for the accuracy, two groups did show significant difference. In the neural level in the brain, we found a significant abnormal increased beta-band (around 25 Hz) activity in CG group after the exercise fatigue task immediately. Long-term high-intensity physical activity reduces basal heart rate, improves executive function, and improve the central tolerance of the body under the stimulation of fatigue and stress. These benefits of long-term activity could be used as a manual to guide people's healthy life.
Collapse
Affiliation(s)
- Junxiang Wang
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875 China
| | - Xudong Zhao
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875 China
| | - Yan Bi
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875 China
| | - Shan Jiang
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, Hong Kong, 999077 China
| | - Yinghua Sun
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875 China
| | - Jian Lang
- College of P.E. and Sports, Beijing Normal University, Beijing, 100875 China
| | - Chuanliang Han
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| |
Collapse
|
9
|
Si H, Sun X. Inter-areal transmission of multiple neural signals through frequency-division-multiplexing communication. Cogn Neurodyn 2023; 17:1153-1165. [PMID: 37786658 PMCID: PMC10542065 DOI: 10.1007/s11571-022-09914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Inter-areal information transmission in the brain cortex relates to cognitive functions. Researches used to pay attention to activity pattern transmission, signals gating, or routing in neuronal networks. However, the underlying mechanism of simultaneous transmission of multiple neural signals in the same channel across networks remains unclear. In this work, we construct a two-layer feedforward neuronal network (sender-receiver) with each layer's intrinsic rhythms consisting of slow- (low-frequency) and fast- gamma rhythms (high-frequency), investigating how to realize simultaneous transmission of multiple signals in neuronal systems. With the aid of resonance and frequency analysis, it is shown that low- and high-frequency signals can be transmitted simultaneously in such a feedforward network through frequency division multiplexing (FDM) communication. The transmission performance is related to the local resonance, connectivity, as well as background noise. Moreover, low- and high-frequency signals can also be gated or selected with appropriate adjustments of recurrent connection strength and delay, and background noise. Our model might provide a novel insight into the underlying mechanism of complex signals communication between different cortex areas.
Collapse
Affiliation(s)
- Hao Si
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Xiaojuan Sun
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| |
Collapse
|
10
|
Dai W, Wang T, Li Y, Yang Y, Zhang Y, Kang J, Wu Y, Yu H, Xing D. Dynamic Recruitment of the Feedforward and Recurrent Mechanism for Black-White Asymmetry in the Primary Visual Cortex. J Neurosci 2023; 43:5668-5684. [PMID: 37487737 PMCID: PMC10401654 DOI: 10.1523/jneurosci.0168-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Black and white information is asymmetrically distributed in natural scenes, evokes asymmetric neuronal responses, and causes asymmetric perceptions. Recognizing the universality and essentiality of black-white asymmetry in visual information processing, the neural substrates for black-white asymmetry remain unclear. To disentangle the role of the feedforward and recurrent mechanisms in the generation of cortical black-white asymmetry, we recorded the V1 laminar responses and LGN responses of anesthetized cats of both sexes. In a cortical column, we found that black-white asymmetry starts at the input layer and becomes more pronounced in the output layer. We also found distinct dynamics of black-white asymmetry between the output layer and the input layer. Specifically, black responses dominate in all layers after stimulus onset. After stimulus offset, black and white responses are balanced in the input layer, but black responses still dominate in the output layer. Compared with that in the input layer, the rebound response in the output layer is significantly suppressed. The relative suppression strength evoked by white stimuli is notably stronger and depends on the location within the ON-OFF cortical map. A model with delayed and polarity-selective cortical suppression explains black-white asymmetry in the output layer, within which prominent recurrent connections are identified by Granger causality analysis. In addition to black-white asymmetry in response strength, the interlaminar differences in spatial receptive field varied dynamically. Our findings suggest that the feedforward and recurrent mechanisms are dynamically recruited for the generation of black-white asymmetry in V1.SIGNIFICANCE STATEMENT Black-white asymmetry is universal and essential in visual information processing, yet the neural substrates for cortical black-white asymmetry remain unknown. Leveraging V1 laminar recordings, we provided the first laminar pattern of black-white asymmetry in cat V1 and found distinct dynamics of black-white asymmetry between the output layer and the input layer. Comparing black-white asymmetry across three visual hierarchies, the LGN, V1 input layer, and V1 output layer, we demonstrated that the feedforward and recurrent mechanisms are dynamically recruited for the generation of cortical black-white asymmetry. Our findings not only enhance our understanding of laminar processing within a cortical column but also elucidate how feedforward connections and recurrent connections interact to shape neuronal response properties.
Collapse
Affiliation(s)
- Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jian Kang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Hongbo Yu
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200438, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
11
|
Han C, Zhao X, Li M, Haihambo N, Teng J, Li S, Qiu J, Feng X, Gao M. Enhancement of the neural response during 40 Hz auditory entrainment in closed-eye state in human prefrontal region. Cogn Neurodyn 2023; 17:399-410. [PMID: 37007205 PMCID: PMC10050539 DOI: 10.1007/s11571-022-09834-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
Gamma-band activity was thought to be related to several high-level cognitive functions, and Gamma ENtrainment Using Sensory stimulation (GENUS, 40 Hz sensory combined visual and auditory stimulation) was found to have positive effects on patients with Alzheimer's dementia. Other studies found, however, that neural responses induced by single 40 Hz auditory stimulation were relatively weak. To address this, we included several new experimental conditions (sounds with sinusoidal or square wave; open-eye and closed-eye state) combined with auditory stimulation with the aim of investigating which of these induces a stronger 40 Hz neural response. We found that when participant´s eyes were closed, sounds with 40 Hz sinusoidal wave induced the strongest 40 Hz neural response in the prefrontal region compared to responses in other conditions. More interestingly, we also found there is a suppression of alpha rhythms with 40 Hz square wave sounds. Our results provide potential new methods when using auditory entrainment, which may result in a better effect in preventing cerebral atrophy and improving cognitive performance. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09834-x.
Collapse
Affiliation(s)
- Chuanliang Han
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Xixi Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100191 China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jiayi Teng
- WM Therapeutics Ltd, Beijing, 100013 China
- School of Psychology, Philosophy and Language Science, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Sixiao Li
- WM Therapeutics Ltd, Beijing, 100013 China
- School of Music, Faculty of Arts, Humanities and Cultures, University of Leeds, Leeds, LS2 9JT UK
| | - Jinyi Qiu
- School of Artificial Intelligence, Beijing Normal University, Beijing, 100875 China
| | - Xiaoyang Feng
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Michel Gao
- WM Therapeutics Ltd, Beijing, 100013 China
| |
Collapse
|
12
|
Han C, Guo M, Ke X, Zeng L, Li M, Haihambo N, Lu J, Wang L, Wei P. Oscillatory biomarkers of autism: evidence from the innate visual fear evoking paradigm. Cogn Neurodyn 2023; 17:459-466. [PMID: 37007195 PMCID: PMC10050250 DOI: 10.1007/s11571-022-09839-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with multiple associated deficits in both social and cognitive functioning. Diagnosing ASD usually relies on subjective clinical competencies, and research on objective criteria for diagnosing ASD in the early stage is still in its infancy. A recent animal study showed that the looming-evoked defensive response was impaired in mice with ASD, but whether the effect will be observed in human and contribute to finding a robust clinical neural biomarker remain unclear. Here, to investigate the looming-evoked defense response in humans, electroencephalogram responses toward looming and corresponding control stimuli (far and missing type) were recorded in children with ASD and typical developed (TD) children. Results revealed that alpha-band activity in the posterior brain region was strongly suppressed after looming stimuli in the TD group, but remained unchanged in the ASD group. This method could be a novel, objective way to detect ASD earlier. These findings suggest that further investigation of the neural mechanism underlying innate fear from the oscillatory view could be a helpful direction in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09839-6.
Collapse
Affiliation(s)
- Chuanliang Han
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Mingrou Guo
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Xiaoyin Ke
- Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Lanting Zeng
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jianping Lu
- Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Liping Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Pengfei Wei
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
13
|
Xu K, Liu R, Chen X, Chen X, Yang Y, Wang Q, Yang J. Research on brain functions related to visual information processing and body coordination function of pilots based on the low-frequency amplitude method. Front Hum Neurosci 2023; 17:796526. [PMID: 37007677 PMCID: PMC10050347 DOI: 10.3389/fnhum.2023.796526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Objective Research on the differences in physiological and psychological mechanisms of practitioners in different occupations is a current hot spot, such as pilots. This study explores the frequency-dependent changes of pilots' low-frequency amplitudes in the classical frequency band and sub-frequency band between pilots and general occupations. The goal of the current work is to provide objective brain images for the selection and evaluation of outstanding pilots. Methods Twenty-six pilots and 23 age-, sex-, and education-matched healthy controls were included in this study. Then the mean low-frequency amplitude (mALFF) of the classical frequency band and sub-frequency band was calculated. The two-sample t-test was performed on SPM12 to analyze the differences between the flight group and control group in the classic frequency band. To explore the main effects and the inter-band effects of the mean low-frequency amplitude (mALFF), the mixed design analysis of variance was applied in the sub-frequency bands. Results Compared with the control group, left cuneiform lobe and the right cerebellum six area of pilots show significant difference in the classic frequency band. And the main effect results in the sub-frequency bands show that the area with higher mALFF in the flight group is located on the left middle occipital gyrus, the left cuneiform lobe, the right superior occipital gyrus, the right superior gyrus, and the left lateral central lobule. However, the area where the value of mALFF decreased is mainly located on the left rectangular cleft with surrounding cortex and the right dorsolateral superior frontal gyrus. Besides, compared with the slow-4 frequency band, the mALFF of the left middle orbital middle frontal gyrus of the slow-5 frequency band was increased, while the mALFF value of the left putamen, left fusiform gyrus, and right thalamus was decreased. The sensitivity of the slow-5 frequency band and the slow-4 frequency band to the pilots' different brain areas was also different. Also, the different brain areas in the classic frequency band and the sub-frequency band were significantly correlated with pilots' flight hours. Conclusion Our findings showed that the left cuneiform brain area and the right cerebellum of pilots changed significantly during resting state. And there was a positive correlation between the mALFF value of those brain area and flight hours. The comparative analysis of sub-frequency bands found that the slow-5 band could elucidate a wider range of different brain regions, providing new ideas for exploring the brain mechanisms of pilots.
Collapse
Affiliation(s)
- Kaijun Xu
- School of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Bakhtiari A, Petersen J, Urdanibia-Centelles O, Ghazi MM, Fagerlund B, Mortensen EL, Osler M, Lauritzen M, Benedek K. Power and distribution of evoked gamma oscillations in brain aging and cognitive performance. GeroScience 2023:10.1007/s11357-023-00749-x. [PMID: 36763241 PMCID: PMC10400513 DOI: 10.1007/s11357-023-00749-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
AIMS Gamma oscillations (≈25-100 Hz) are believed to play an essential role in cognition, and aberrant gamma oscillations occur in brain aging and neurodegeneration. This study examined age-related changes in visually evoked gamma oscillations at two different time points 5 years apart and tested the hypothesis that the power of gamma oscillations correlated to cognitive skills. METHODS The cohort consists of elderly males belonging to the Metropolit 1953 Danish Male Birth Cohort (first visit, N=124; second visit, N=88) over a 5-year period from 63 to 68 years of age. Cognitive functions were assessed using a neuropsychological test battery measuring global cognition, intelligence, memory, and processing speed. The power of steady-state visual evoked potentials (SSVEP) was measured at 8 Hz (alpha) and 36 Hz (gamma) frequencies using EEG scalp electrodes. RESULTS Over the 5-year period cognitive performance remained relatively stable while the power of visually evoked gamma oscillations shifted from posterior to anterior brain regions with increasing age. A higher-than-average cognitive score was correlated with higher gamma power in parieto-occipital areas and lower in frontocentral areas, i.e., preserved distribution of the evoked activity. CONCLUSIONS Our data reveal that the distribution of visually evoked gamma activity becomes distributed with age. Preserved posterior-occipital gamma power in participants with a high level of cognitive performance is consistent with a close association between the ability to produce gamma oscillations and cognition. The data may contribute to our understanding of the mechanisms that link evoked gamma activity and cognition in the aging brain.
Collapse
Affiliation(s)
- Aftab Bakhtiari
- Department of Clinical Neurophysiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark. .,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jacob Petersen
- Department of Clinical Neurophysiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Olalla Urdanibia-Centelles
- Department of Clinical Neurophysiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mostafa Mehdipour Ghazi
- Pioneer Centre for Artificial Intelligence, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Fagerlund
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark.,Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | | | - Merete Osler
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Martin Lauritzen
- Department of Clinical Neurophysiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Krisztina Benedek
- Department of Clinical Neurophysiology, The Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Meneghetti N, Cerri C, Vannini E, Tantillo E, Tottene A, Pietrobon D, Caleo M, Mazzoni A. Synaptic alterations in visual cortex reshape contrast-dependent gamma oscillations and inhibition-excitation ratio in a genetic mouse model of migraine. J Headache Pain 2022; 23:125. [PMID: 36175826 PMCID: PMC9523950 DOI: 10.1186/s10194-022-01495-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background Migraine affects a significant fraction of the world population, yet its etiology is not completely understood. In vitro results highlighted thalamocortical and intra-cortical glutamatergic synaptic gain-of-function associated with a monogenic form of migraine (familial-hemiplegic-migraine-type-1: FHM1). However, how these alterations reverberate on cortical activity remains unclear. As altered responsivity to visual stimuli and abnormal processing of visual sensory information are common hallmarks of migraine, herein we investigated the effects of FHM1-driven synaptic alterations in the visual cortex of awake mice. Methods We recorded extracellular field potentials from the primary visual cortex (V1) of head-fixed awake FHM1 knock-in (n = 12) and wild type (n = 12) mice in response to square-wave gratings with different visual contrasts. Additionally, we reproduced in silico the obtained experimental results with a novel spiking neurons network model of mouse V1, by implementing in the model both the synaptic alterations characterizing the FHM1 genetic mouse model adopted. Results FHM1 mice displayed similar amplitude but slower temporal evolution of visual evoked potentials. Visual contrast stimuli induced a lower increase of multi-unit activity in FHM1 mice, while the amount of information content about contrast level remained, however, similar to WT. Spectral analysis of the local field potentials revealed an increase in the β/low γ range of WT mice following the abrupt reversal of contrast gratings. Such frequency range transitioned to the high γ range in FHM1 mice. Despite this change in the encoding channel, these oscillations preserved the amount of information conveyed about visual contrast. The computational model showed how these network effects may arise from a combination of changes in thalamocortical and intra-cortical synaptic transmission, with the former inducing a lower cortical activity and the latter inducing the higher frequencies ɣ oscillations. Conclusions Contrast-driven ɣ modulation in V1 activity occurs at a much higher frequency in FHM1. This is likely to play a role in the altered processing of visual information. Computational studies suggest that this shift is specifically due to enhanced cortical excitatory transmission. Our network model can help to shed light on the relationship between cellular and network levels of migraine neural alterations. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01495-9.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, 56025, Pisa, Italy.,Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, 56025, Pisa, Italy
| | - Chiara Cerri
- Neuroscience Institute, National Research Council (CNR), 56124, Pisa, Italy.,Fondazione Umberto Veronesi, 20122, Milan, Italy.,Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), 56124, Pisa, Italy.,Fondazione Umberto Veronesi, 20122, Milan, Italy
| | - Elena Tantillo
- Neuroscience Institute, National Research Council (CNR), 56124, Pisa, Italy.,Fondazione Pisana per la Scienza Onlus (FPS), 56017, Pisa, Italy.,Scuola Normale Superiore, 56100, Pisa, Italy
| | - Angelita Tottene
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy.,Padova Neuroscience Center, University of Padova, 35131, Padova, Italy.,CNR Institute of Neuroscience, 35131, Padova, Italy
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), 56124, Pisa, Italy.,Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy.,Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, 56025, Pisa, Italy. .,Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, 56025, Pisa, Italy.
| |
Collapse
|
16
|
Han C, Wang T, Wu Y, Li H, Wang E, Zhao X, Cao Q, Qian Q, Wang Y, Dou F, Liu JK, Sun L, Xing D. Compensatory mechanism of attention-deficit/hyperactivity disorder recovery in resting state alpha rhythms. Front Comput Neurosci 2022; 16:883065. [PMID: 36157841 PMCID: PMC9490822 DOI: 10.3389/fncom.2022.883065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Alpha rhythms in the human electroencephalogram (EEG), oscillating at 8-13 Hz, are located in parieto-occipital cortex and are strongest when awake people close their eyes. It has been suggested that alpha rhythms were related to attention-related functions and mental disorders (e.g., Attention-deficit/hyperactivity disorder (ADHD)). However, many studies have shown inconsistent results on the difference in alpha oscillation between ADHD and control groups. Hence it is essential to verify this difference. In this study, a dataset of EEG recording (128 channel EGI) from 87 healthy controls (HC) and 162 ADHD (141 persisters and 21 remitters) adults in a resting state with their eyes closed was used to address this question and a three-gauss model (summation of baseline and alpha components) was conducted to fit the data. To our surprise, the power of alpha components was not a significant difference among the three groups. Instead, the baseline power of remission and HC group in the alpha band is significantly stronger than that of persister groups. Our results suggest that ADHD recovery may have compensatory mechanisms and many abnormalities in EEG may be due to the influence of behavior rather than the difference in brain signals.
Collapse
Affiliation(s)
- Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hui Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Encong Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Xixi Zhao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Qingjiu Cao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Genetic Engineering Drugs and Biotechnology, Beijing Normal University, Beijing, China
| | - Jian K. Liu
- School of Computing, University of Leeds, Leeds, United Kingdom
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorder and Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
- Li Sun,
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- *Correspondence: Dajun Xing,
| |
Collapse
|
17
|
Li Y, Wang T, Yang Y, Dai W, Wu Y, Li L, Han C, Zhong L, Li L, Wang G, Dou F, Xing D. Cascaded normalizations for spatial integration in the primary visual cortex of primates. Cell Rep 2022; 40:111221. [PMID: 35977486 DOI: 10.1016/j.celrep.2022.111221] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022] Open
Abstract
Spatial integration of visual information is an important function in the brain. However, neural computation for spatial integration in the visual cortex remains unclear. In this study, we recorded laminar responses in V1 of awake monkeys driven by visual stimuli with grating patches and annuli of different sizes. We find three important response properties related to spatial integration that are significantly different between input and output layers: neurons in output layers have stronger surround suppression, smaller receptive field (RF), and higher sensitivity to grating annuli partially covering their RFs. These interlaminar differences can be explained by a descriptive model composed of two global divisions (normalization) and a local subtraction. Our results suggest suppressions with cascaded normalizations (CNs) are essential for spatial integration and laminar processing in the visual cortex. Interestingly, the features of spatial integration in convolutional neural networks, especially in lower layers, are different from our findings in V1.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lianfeng Li
- China Academy of Launch Vehicle Technology, Beijing 100076, China
| | - Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lvyan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing 100005, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100005, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
18
|
Sarrias-Arrabal E, Martín-Clemente R, Galvao-Carmona A, Benítez-Lugo ML, Vázquez-Marrufo M. Effect of the side of presentation in the visual field on phase-locked and nonphase-locked alpha and gamma responses. Sci Rep 2022; 12:13200. [PMID: 35915098 PMCID: PMC9343444 DOI: 10.1038/s41598-022-15936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies have suggested that nonphase-locked activity can reveal cognitive mechanisms that cannot be observed in phase-locked activity. In fact, we describe a concomitant decrease in nonphase-locked alpha activity (desynchronization) when stimuli were processed (alpha phase-locked modulation). This desynchronization may represent a reduction in "background activity" in the visual cortex that facilitates stimulus processing. Alternatively, nonphase-locked gamma activity has been hypothesized to be an index of shifts in attentional focus. In this study, our main aim was to confirm these potential roles for nonphase-locked alpha and gamma activities with a lateralized Go/NoGo paradigm. The results showed that nonphase-locked alpha modulation is bilaterally represented in the scalp compared to the contralateral distribution of the phase-locked response. This finding suggests that the decrease in background activity is not limited to neural areas directly involved in the visual processing of stimuli. Additionally, gamma activity showed a higher desynchronization of nonphase-locked activity in the ipsilateral hemisphere, where the phase-locked activity reached the minimum amplitude. This finding suggests that the possible functions of nonphase-locked gamma activity extend beyond shifts in attentional focus and could represent an attentional filter reducing the gamma representation in the visual area irrelevant to the task.
Collapse
Affiliation(s)
- Esteban Sarrias-Arrabal
- Lab B508 (Psychophysiology Unit), Experimental Psychology Department, Faculty of Psychology, University of Seville, Seville, Spain.
| | - Ruben Martín-Clemente
- Signal Processing and Communications Department, Higher Technical School of Engineering, University of Seville, Seville, Spain
| | | | - María Luisa Benítez-Lugo
- Physiotherapy Department, Faculty of Nursing, Physiotherapy and Chiropody, University of Seville, Seville, Spain
| | - Manuel Vázquez-Marrufo
- Lab B508 (Psychophysiology Unit), Experimental Psychology Department, Faculty of Psychology, University of Seville, Seville, Spain
| |
Collapse
|