1
|
Tuncer T, Dogan S, Tasci I, Tasci B, Hajiyeva R. TATPat based explainable EEG model for neonatal seizure detection. Sci Rep 2024; 14:26688. [PMID: 39496779 PMCID: PMC11535284 DOI: 10.1038/s41598-024-77609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
The most cost-effective data collection method is electroencephalography (EEG) to obtain meaningful information about the brain. Therefore, EEG signal processing is very important for neuroscience and machine learning (ML). The primary objective of this research is to detect neonatal seizures and explain these seizures using the new version of Directed Lobish. This research uses a publicly available neonatal EEG signal dataset to get comparative results. In order to classify these EEG signals, an explainable feature engineering (EFE) model has been proposed. In this EFE model, there are four essential phases and these phases: (i) automaton and transformer-based feature extraction, (ii) feature selection deploying cumulative weight-based neighborhood component analysis (CWNCA), (iii) the Directed Lobish (DLob) and Causal Connectome Theory (CCT)-based explainable result generation and (iv) classification deploying t algorithm-based support vector machine (tSVM). In the first phase, we have used a channel transformer to get channel numbers and these values have been divided into three levels and these levels are named (1) high, (2) medium and (3) low. By utilizing these levels, we have created an automaton and this automaton has three nodes (each node defines each level). In the feature extraction phase, transition tables of these nodes has been extracted. Therefore, the proposed feature extraction function is termed Triple Nodes Automaton-based Transition table Pattern (TATPat). The used EEG signal dataset contains 19 channels and there are 9 (= 32) connection in the defined automaton. Thus, the presented TATPat extracts 3249 (= 19 × 19 × 9) features from each EEG segment. To choose the most informative features of these 3249 features, a new feature selector which is CWNCA has been applied. By cooperating findings of this feature selector and the presented DLob, the explainable results have been obtained. The last phase is the classification phase and to get high classification performance from this phase, an ensemble classifier (tSVM) has been presented and the classification results have been obtained using two validation techniques which are 10-fold cross-validation (CV) and leave-one subject-out (LOSO) CV. The proposed EFE model generates a DLob string and by using this string, the explainable results have been obtained. Moreover, the presented EFE model attained 99.15% and 76.37% classification accuracy deploying 10-fold and LOSO CVs respectively. According to the classification performances, the recommended TATPat-based EFE is a good model at EEG signal classification. Also, the presented TATPat-based EFE model is a good model for explainable artificial intelligence (XAI) since TTPat-based EFE is cooperating by the DLob.
Collapse
Affiliation(s)
- Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, 23119, Elazig, Turkey
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, 23119, Elazig, Turkey.
| | - Irem Tasci
- Department of Neurology, School of Medicine, Firat University, Elazig, Turkey
| | - Burak Tasci
- Vocational School of Technical Sciences, Firat University, 23119, Elazig, Turkey
| | - Rena Hajiyeva
- Department of Information Technologies, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
2
|
Chau G, Wang C, Talukder S, Subramaniam V, Soedarmadji S, Yue Y, Katz B, Barbu A. Population Transformer: Learning Population-Level Representations of Neural Activity. ARXIV 2024:arXiv:2406.03044v2. [PMID: 38883237 PMCID: PMC11177958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
We present a self-supervised framework that learns population-level codes for arbitrary ensembles of neural recordings at scal. We address two key challenges in scaling models with neural time-series data: sparse and variable electrode distribution across subjects and datasets. The Population Transformer (PopT) stacks on top of pretrained representations and enhances downstream decoding by enabling learned aggregation of multiple spatially-sparse data channels. The pretrained PopT lowers the amount of data required for downstream decoding experiments, while increasing accuracy, even on held-out subjects and tasks. Compared to end-to-end methods, this approach is computationally lightweight and more interpretable, while still retaining competitive performance. We further show how our framework is generalizable to multiple time-series embeddings and neural data modalities. Beyond decoding, we interpret the pretrained PopT and fine-tuned models to show how they can be used to extract neuroscience insights from massive amounts of data. We release our code as well as a pretrained PopT to enable off-the-shelf improvements in multi-channel intracranial data decoding and interpretability.
Collapse
|
3
|
Tajmirriahi M, Rabbani H. A Review of EEG-based Localization of Epileptic Seizure Foci: Common Points with Multimodal Fusion of Brain Data. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:19. [PMID: 39234592 PMCID: PMC11373807 DOI: 10.4103/jmss.jmss_11_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 05/24/2024] [Indexed: 09/06/2024]
Abstract
Unexpected seizures significantly decrease the quality of life in epileptic patients. Seizure attacks are caused by hyperexcitability and anatomical lesions of special regions of the brain, and cognitive impairments and memory deficits are their most common concomitant effects. In addition to seizure reduction treatments, medical rehabilitation involving brain-computer interfaces and neurofeedback can improve cognition and quality of life in patients with focal epilepsy in most cases, in particular when resective epilepsy surgery has been considered treatment in drug-resistant epilepsy. Source estimation and precise localization of epileptic foci can improve such rehabilitation and treatment. Electroencephalography (EEG) monitoring and multimodal noninvasive neuroimaging techniques such as ictal/interictal single-photon emission computerized tomography (SPECT) imaging and structural magnetic resonance imaging are common practices for the localization of epileptic foci and have been studied in several kinds of researches. In this article, we review the most recent research on EEG-based localization of seizure foci and discuss various methods, their advantages, limitations, and challenges with a focus on model-based data processing and machine learning algorithms. In addition, we survey whether combined analysis of EEG monitoring and neuroimaging techniques, which is known as multimodal brain data fusion, can potentially increase the precision of the seizure foci localization. To this end, we further review and summarize the key parameters and challenges of processing, fusion, and analysis of multiple source data, in the framework of model-based signal processing, for the development of a multimodal brain data analyzing system. This article has the potential to be used as a valuable resource for neuroscience researchers for the development of EEG-based rehabilitation systems based on multimodal data analysis related to focal epilepsy.
Collapse
Affiliation(s)
- Mahnoosh Tajmirriahi
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Rabbani
- Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Kim DH, Park JO, Lee DY, Choi YS. Multiscale distribution entropy analysis of short epileptic EEG signals. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5556-5576. [PMID: 38872548 DOI: 10.3934/mbe.2024245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This paper proposes an information-theoretic measure for discriminating epileptic patterns in short-term electroencephalogram (EEG) recordings. Considering nonlinearity and nonstationarity in EEG signals, quantifying complexity has been preferred. To decipher abnormal epileptic EEGs, i.e., ictal and interictal EEGs, via short-term EEG recordings, a distribution entropy (DE) is used, motivated by its robustness on the signal length. In addition, to reflect the dynamic complexity inherent in EEGs, a multiscale entropy analysis is incorporated. Here, two multiscale distribution entropy (MDE) methods using the coarse-graining and moving-average procedures are presented. Using two popular epileptic EEG datasets, i.e., the Bonn and the Bern-Barcelona datasets, the performance of the proposed MDEs is verified. Experimental results show that the proposed MDEs are robust to the length of EEGs, thus reflecting complexity over multiple time scales. In addition, the proposed MDEs are consistent irrespective of the selection of short-term EEGs from the entire EEG recording. By evaluating the Man-Whitney U test and classification performance, the proposed MDEs can better discriminate epileptic EEGs than the existing methods. Moreover, the proposed MDE with the moving-average procedure performs marginally better than one with the coarse-graining. The experimental results suggest that the proposed MDEs are applicable to practical seizure detection applications.
Collapse
Affiliation(s)
- Dae Hyeon Kim
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Jin-Oh Park
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Dae-Young Lee
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| | - Young-Seok Choi
- Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, South Korea
| |
Collapse
|
5
|
Miao Y, Iimura Y, Sugano H, Fukumori K, Tanaka T. Seizure onset zone identification using phase-amplitude coupling and multiple machine learning approaches for interictal electrocorticogram. Cogn Neurodyn 2023; 17:1591-1607. [PMID: 37969944 PMCID: PMC10640557 DOI: 10.1007/s11571-022-09915-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Automatic seizure onset zone (SOZ) localization using interictal electrocorticogram (ECoG) improves the diagnosis and treatment of patients with medically refractory epilepsy. This study aimed to investigate the characteristics of phase-amplitude coupling (PAC) extracted from interictal ECoG and the feasibility of PAC serving as a promising biomarker for SOZ identification. We employed the mean vector length modulation index approach on the 20-s ECoG window to calculate PAC features between low-frequency rhythms (0.5-24 Hz) and high frequency oscillations (HFOs) (80-560 Hz). We used statistical measures to test the significant difference in PAC between the SOZ and non-seizure onset zone (NSOZ). To overcome the drawback of handcraft feature engineering, we established novel machine learning models to learn automatically the characteristics of the obtained PAC features and classify them to identify the SOZ. Besides, to handle imbalanced dataset classification, we introduced novel feature-wise/class-wise re-weighting strategies in conjunction with classifiers. In addition, we proposed a time-series nest cross-validation to provide more accurate and unbiased evaluations for this model. Seven patients with focal cortical dysplasia were included in this study. The experiment results not only showed that a significant coupling at band pairs of slow waves and HFOs exists in the SOZ when compared with the NSOZ, but also indicated the effectiveness of the PAC features and the proposed models in achieving better classification performance .
Collapse
Affiliation(s)
- Yao Miao
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasushi Iimura
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kosuke Fukumori
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Toshihisa Tanaka
- Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
- RIKEN Center for Brain Science, Saitama, Japan
- RIKEN Center for Advanced Intelligent Project, Tokyo, Japan
| |
Collapse
|
6
|
Guo Y, Wu F, Yang F, Ma J. Physical approach of a neuron model with memristive membranes. CHAOS (WOODBURY, N.Y.) 2023; 33:113106. [PMID: 37909904 DOI: 10.1063/5.0170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
The membrane potential of a neuron is mainly controlled by the gradient distribution of electromagnetic field and concentration diversity between intracellular and extracellular ions. Without considering the thickness and material property, the electric characteristic of cell membrane is described by a capacitive variable and output voltage in an equivalent neural circuit. The flexible property of cell membrane enables controllability of endomembrane and outer membrane, and the capacitive properties and gradient field can be approached by double membranes connected by a memristor in an equivalent neural circuit. In this work, two capacitors connected by a memristor are used to mimic the physical property of two-layer membranes, and an inductive channel is added to the neural circuit. A biophysical neuron is obtained and the energy characteristic, dynamics, self-adaption is discussed, respectively. Coherence resonance and mode selection in adaptive way are detected under noisy excitation. The distribution of average energy function is effective to predict the appearance of coherence resonance. An adaptive law is proposed to control the capacitive parameters, and the controllability of cell membrane under external stimulus can be explained in theoretical way. The neuron with memristive membranes explains the self-adaptive mechanism of parameter changes and mode transition from energy viewpoint.
Collapse
Affiliation(s)
- Yitong Guo
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Fuqiang Wu
- School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China
| | - Feifei Yang
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jun Ma
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
7
|
Ficici C, Telatar Z, Kocak O, Erogul O. Identification of TLE Focus from EEG Signals by Using Deep Learning Approach. Diagnostics (Basel) 2023; 13:2261. [PMID: 37443655 DOI: 10.3390/diagnostics13132261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Temporal lobe epilepsy, a neurological disease that causes seizures as a result of excessive neural activities in the brain, is the most common type of focal seizure, accounting for 30-35% of all epilepsies. Detection of epilepsy and localization of epileptic focus are essential for treatment planning and epilepsy surgery. Currently, epileptic focus is decided by expert physician by examining the EEG records and determining EEG channel where epileptic patterns begins and continues intensely during seizure. Examination of long EEG recordings is very time-consuming process, requires attention and decision can vary depending on physician. In this study, to assist physicians in detecting epileptic focus side from EEG recordings, a novel deep learning-based computer-aided diagnosis system is presented. In the proposed framework, ictal epochs are detected using long short-term memory network fed with EEG subband features obtained by discrete wavelet transform, and then, epileptic focus identification is realized by using asymmetry score. This algorithm was tested on EEG database obtained from the Ankara University hospital. Experimental results showed ictal and interictal epochs were classified with accuracy of 86.84%, sensitivity of 86.96% and specificity of 89.68% on Ankara University hospital dataset, and 96.67% success rate was obtained on Bonn EEG dataset. In addition, epileptic focus was identified with accuracy of 96.10%, sensitivity of 100% and specificity of 93.80% by using the proposed deep learning-based algorithm and university hospital dataset. These results showed that proposed method can be used properly in clinical applications, epilepsy treatment and surgical planning as a medical decision support system.
Collapse
Affiliation(s)
- Cansel Ficici
- Department of Electrical and Electronics Engineering, Ankara University, 06830 Ankara, Turkey
| | - Ziya Telatar
- Department of Biomedical Engineering, Başkent University, 06790 Ankara, Turkey
| | - Onur Kocak
- Department of Biomedical Engineering, Başkent University, 06790 Ankara, Turkey
| | - Osman Erogul
- Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey
| |
Collapse
|