1
|
Jackson ML, Bond AR, Ascione R, Johnson JL, George SJ. FGL2/FcγRIIB Signalling Mediates Arterial Shear Stress-Mediated Endothelial Cell Apoptosis: Implications for Coronary Artery Bypass Vein Graft Pathogenesis. Int J Mol Sci 2024; 25:7638. [PMID: 39062880 PMCID: PMC11277082 DOI: 10.3390/ijms25147638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The sudden exposure of venous endothelial cells (vECs) to arterial fluid shear stress (FSS) is thought to be a major contributor to coronary artery bypass vein graft failure (VGF). However, the effects of arterial FSS on the vEC secretome are poorly characterised. We propose that analysis of the vEC secretome may reveal potential therapeutic approaches to suppress VGF. Human umbilical vein endothelial cells (HUVECs) pre-conditioned to venous FSS (18 h; 1.5 dynes/cm2) were exposed to venous or arterial FSS (15 dynes/cm2) for 24 h. Tandem Mass Tagging proteomic analysis of the vEC secretome identified significantly increased fibroleukin (FGL2) in conditioned media from HUVECs exposed to arterial FSS. This increase was validated by Western blotting. Application of the NFκB inhibitor BAY 11-7085 (1 µM) following pre-conditioning reduced FGL2 release from vECs exposed to arterial FSS. Exposure of vECs to arterial FSS increased apoptosis, measured by active cleaved caspase-3 (CC3) immunocytochemistry, which was likewise elevated in HUVECs treated with recombinant FGL2 (20 ng/mL) for 24 h under static conditions. To determine the mechanism of FGL2-induced apoptosis, HUVECs were pre-treated with a blocking antibody to FcγRIIB, a receptor FGL2 is proposed to interact with, which reduced CC3 levels. In conclusion, our findings indicate that the exposure of vECs to arterial FSS results in increased release of FGL2 via NFκB signalling, which promotes endothelial apoptosis via FcγRIIB signalling. Therefore, the inhibition of FGL2/FcγRIIB signalling may provide a novel approach to reduce arterial FSS-induced vEC apoptosis in vein grafts and suppress VGF.
Collapse
Affiliation(s)
| | | | | | | | - Sarah J. George
- Translational Health Sciences, Bristol Medical School, Faculty of Health and Life Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.L.J.); (A.R.B.); (R.A.); (J.L.J.)
| |
Collapse
|
2
|
Ustinova M, Peculis R, Rescenko R, Rovite V, Zaharenko L, Elbere I, Silamikele L, Konrade I, Sokolovska J, Pirags V, Klovins J. Novel susceptibility loci identified in a genome-wide association study of type 2 diabetes complications in population of Latvia. BMC Med Genomics 2021; 14:18. [PMID: 33430853 PMCID: PMC7802349 DOI: 10.1186/s12920-020-00860-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes complications cause a serious emotional and economical burden to patients and healthcare systems globally. Management of both acute and chronic complications of diabetes, which dramatically impair the quality of patients' life, is still an unsolved issue in diabetes care, suggesting a need for early identification of individuals with high risk for developing diabetes complications. METHODS We performed a genome-wide association study in 601 type 2 diabetes patients after stratifying them according to the presence or absence of four types of diabetes complications: diabetic neuropathy, diabetic nephropathy, macrovascular complications, and ophthalmic complications. RESULTS The analysis revealed ten novel associations showing genome-wide significance, including rs1132787 (GYPA, OR = 2.71; 95% CI = 2.02-3.64) and diabetic neuropathy, rs2477088 (PDE4DIP, OR = 2.50; 95% CI = 1.87-3.34), rs4852954 (NAT8, OR = 2.27; 95% CI = 2.71-3.01), rs6032 (F5, OR = 2.12; 95% CI = 1.63-2.77), rs6935464 (RPS6KA2, OR = 2.25; 95% CI = 6.69-3.01) and macrovascular complications, rs3095447 (CCDC146, OR = 2.18; 95% CI = 1.66-2.87) and ophthalmic complications. By applying the targeted approach of previously reported susceptibility loci we managed to replicate three associations: MAPK14 (rs3761980, rs80028505) and diabetic neuropathy, APOL1 (rs136161) and diabetic nephropathy. CONCLUSIONS Together these results provide further evidence for the implication of genetic factors in the development of type 2 diabetes complications and highlight several potential key loci, able to modify the risk of developing these conditions. Moreover, the candidate variant approach proves a strong and consistent effect for multiple variants across different populations.
Collapse
Affiliation(s)
- Monta Ustinova
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, 1067, Latvia
| | - Raitis Peculis
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, 1067, Latvia
| | - Raimonds Rescenko
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, 1067, Latvia
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, 1067, Latvia
| | - Linda Zaharenko
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, 1067, Latvia
| | - Ilze Elbere
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, 1067, Latvia
| | - Laila Silamikele
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, 1067, Latvia
| | - Ilze Konrade
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, 1067, Latvia
- Faculty of Medicine, Riga Stradins University, Dzirciema iela 16, Riga, 1007, Latvia
| | | | - Valdis Pirags
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, 1067, Latvia
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, Riga, 1004, Latvia
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, Riga, 1067, Latvia.
| |
Collapse
|
3
|
Liu X, Chu Y, Wang D, Weng Y, Jia Z. MAPK-mediated upregulation of fibrinogen-like protein 2 promotes proliferation, migration, and invasion of colorectal cancer cells. Cell Biol Int 2019; 43:1483-1491. [PMID: 31286589 DOI: 10.1002/cbin.11198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/05/2019] [Indexed: 01/24/2023]
Abstract
Fibrinogen-like protein 2 (FGL2) has been reported to play a key role in the development of human cancers. However, it is still unmasked whether FGL2 plays a potential role in colorectal carcinogenesis. In this study, the messenger RNA and protein expression levels were measured by quantitative real-time polymerase chain reaction and western blot. Cell counting kit-8 assay, transwell migration, and invasion assay were carried out to evaluate the proliferation, migration, and invasion of LOVO and SW620 cells. FGL2 was upregulated in colorectal cancer (CRC) tissues, as well as cell lines. Mitogen-activated protein kinase (MAPK) signaling was activated in CRC tissues and cell lines. FGL2 was confirmed to be downregulated by MAPK signaling inhibitor U0126. Further, we determined that knockdown of FGL2 caused a reduction of proliferation, migration, and invasion in LOVO and SW620 cells. Consistently, treatment of LOVO and SW620 cells with U0126 led to a decrease in cell proliferation, migration, and invasion. However, these changes initiated by U0126 were abolished by FGL2 overexpression. To conclude, MAPK-mediated upregulation of FGL2 promotes the proliferation, migration, and invasion of CRC cells.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Gastroenterology, Meitan General Hospital, 100028 Peking, China
| | - Yunxiang Chu
- Department of Gastroenterology, Meitan General Hospital, 100028 Peking, China
| | - Dongsheng Wang
- Department of Gastroenterology, Meitan General Hospital, 100028 Peking, China
| | - Yan Weng
- Department of Gastroenterology, Meitan General Hospital, 100028 Peking, China
| | - Zhiwei Jia
- Department of Gastroenterology, Meitan General Hospital, 100028 Peking, China
| |
Collapse
|
4
|
Zheng Z, Zhang F, Gao D, Wu Y, Wu H. Gene expression profiles of rat MMECs with different glucose levels and fgl2 gene silencing. Diabetes Metab Res Rev 2018; 34:e3058. [PMID: 30098304 PMCID: PMC11035109 DOI: 10.1002/dmrr.3058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cardiac microvascular endothelial cells (MMECs) is one of the key factors in the process of diabetic cardiomyopathy, a common chronic complication of diabetes. Fibrinogen-like protein 2 (FGL2) is linked to apoptosis, angiogenesis, and inflammatory response, all of which also occur in diabetes. Thus, we investigate the role of FGL 2 and other genes in the pathology of diabetic cardiomyopathy. METHODS In the present study, we used high-throughput microarray to profile gene expression in rat myocardial MMECs with or without silencing the fgl2 gene and in different glucose environments. We use volcanic maps to isolate genes with significantly different expression levels between conditions, using the standard statistical criteria of fold changes ≥1.5 and P-values ≤0.05. From this list, we identified genes with the most signicant changes in RNA levels and confirmed their protein-level changes with Western blot. Furthermore, bioinformatic analysis predicts possible pathophysiology and clinical relevance of these proteins in diabetic cardiomyopathy. RESULTS We identified 17 upregulated and 15 downregulated genes caused by silencing fgl2 gene. Most of them are involved in metabolism, ion transport, cell membrane surface recognition signal modification, inflammatory response, and immune response. Using Western blot, we were able to confirm protein-level expression changes of three genes. Specifically, in both normal and high glucose conditions, silencing fgl2 significantly decreased the expression levels of CCL3 and PLAGL1 while increasing the expression level of CTSC. Significantly, bioinformatic analyses show that CCL3 is related to type 1 diabetes, PLAGL1 to cardiomyocytes, and CTSC to albuminuria in type 2 diabetes. CONCLUSIONS Our study provides clues for further studies on the mechanism of diabetic cardiomyopathy as well as function of FGL2 in this process, potentially offering new therapeutic strategies for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhenzhong Zheng
- Department of Cardiology, The First Affiliated Hospital of NanchangUniversity, Nanchang, Jiangxi, China
- Jiangxi Hypertension Research Institute, Nanchang, Jiangxi, China
| | - Fan Zhang
- Department of Nephrology, People’s Hospital of Hunan Province, First Affiliated Hospital of Hunan Normal University, Chang sha, Hunan, China
| | - Dengpeng Gao
- Department of Cardiology, The First Affiliated Hospital of NanchangUniversity, Nanchang, Jiangxi, China
- Jiangxi Hypertension Research Institute, Nanchang, Jiangxi, China
| | - Yujing Wu
- Department of Cardiology, The First Affiliated Hospital of NanchangUniversity, Nanchang, Jiangxi, China
- Jiangxi Hypertension Research Institute, Nanchang, Jiangxi, China
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Sun Y, Xi D, Ding W, Wang F, Zhou H, Ning Q. Soluble FGL2, a novel effector molecule of activated hepatic stellate cells, regulates T-cell function in cirrhotic patients with hepatocellular carcinoma. Hepatol Int 2014; 8:567-75. [PMID: 25298849 PMCID: PMC4182595 DOI: 10.1007/s12072-014-9568-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/29/2014] [Indexed: 01/08/2023]
Abstract
Purpose To investigate the effects of soluble FGL2 (sFGL2) secreted by hepatic stellate cells (HSCs) on immune suppression in cirrhotic patients with hepatocellular carcinoma (HCC). Methods Serum sFGL2 levels were examined by ELISA in 40 patients with HCC, liver cirrhosis (LC) or chronic HBV (CHB) infection. A double staining of the immunofluorescence analysis of α-SMA and FGL2 was performed in two cirrhotic liver specimens. The expression of FGL2 in the LX2 cell line was analyzed by immunofluorescence, Western blot and flow cytometry. T-cells purified from HCC patients using magnetic beads were cultured with LX2 cells at different ratios with anti-CD3-stimulating or FGL2-blocking antibodies. The proliferation index (PI) of CD8 + T cells was assessed by flow cytometry, and the secretion of IFN-γ was measured by ELISA. Results sFGL2 levels are significantly higher in patients with HCC or LC compared with those with CHB (p = 0.0039/p = 0.0020). Among HCC patients, those with cirrhosis exhibited significantly higher levels of sFGL2 compared with non-cirrhotic individuals (p = 0.0108). The expressions of FGL2 and α-SMA overlapped in HSCs in liver specimens. FGL2 protein secreted by LX2 cells inhibited T-cell proliferation of HCC patients in a dose-dependent manner in vitro. The PI of CD8 + T cells was significantly enhanced following addition of FGL2 antibody to the culture system (LX2/T-cell ratio of 1:10, p = 0.002). The level of IFN-γ in mixed cultures was inversely correlated with the number of HSCs and was reversed by incubation with FGL2 blocking antibody. Conclusion sFGL2 protein is a novel effector molecule of activated HSCs, which suppresses CD8 + T cell proliferation and interferon-γ production, and it subsequently might contribute to immune suppression during fibrosis and tumorigenesis in the liver.
Collapse
Affiliation(s)
- Ying Sun
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No 1095, Jiefang Avenue, Wuhan, 430030 China
| | - Dong Xi
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No 1095, Jiefang Avenue, Wuhan, 430030 China
| | - Wen Ding
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No 1095, Jiefang Avenue, Wuhan, 430030 China
| | - Faxi Wang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No 1095, Jiefang Avenue, Wuhan, 430030 China
| | - Haili Zhou
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No 1095, Jiefang Avenue, Wuhan, 430030 China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No 1095, Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
6
|
Li WZ, Wang J, Long R, Su GH, Bukhory DK, Dai J, Jin N, Huang SY, Jia P, Li T, Fan C, Liu K, Wang Z. Novel antibody against a glutamic acid-rich human fibrinogen-like protein 2-derived peptide near Ser91 inhibits hfgl2 prothrombinase activity. PLoS One 2014; 9:e94551. [PMID: 24728278 PMCID: PMC3984148 DOI: 10.1371/journal.pone.0094551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 03/17/2014] [Indexed: 12/11/2022] Open
Abstract
Fibrinogen-like protein 2 (fgl2) is highly expressed in microvascular endothelial cells in diseases associated with microcirculatory disturbances and plays a crucial role in microthrombosis. Previous studies have demonstrated that the Ser89 residue is a critical site for mouse fgl2 prothrombinase activity. The aim of this study was to investigate the prothrombinase inhibitory ability of antibodies against an hfgl2-derived peptide. The peptide was termed NPG-12 because it is located at the N-terminus of membrane-bound hfgl2, contains 12 amino acid residues (corresponding to residues 76 to 87), and is rich in Glu. This peptide was selected as an antigenic determinant to produce antibodies in immunized rabbits using the DNAStar and HomoloGene software program. Abundant hfgl2 expression was induced in human umbilical vein endothelial cells through treatment with TNF-α. The generated anti-NPG-12 antibodies specifically recognize fgl2, as determined by ELISA, Western Blot and immunostaining. Moreover, one-stage clotting and thrombin generation tests provide evidence that the antibodies can reduce the hfgl2 prothrombinase activity without affecting the platelet-poor plasma prothrombin time (PT) or the activated partial thromboplastin time (APTT). In addition, the antibodies exerted undetectable influence on the proliferation or activation of bulk T cell populations. In conclusion, the selected peptide sequence NPG-12 may be a critical domain for hfgl2 prothrombinase activity, and the development of inhibitors against this sequence may be promising for research or management of hfgl2-associated microcirculatory disturbances.
Collapse
Affiliation(s)
- Wen-Zhu Li
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Geriatrics, Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guan-Hua Su
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dinesh-Kumar Bukhory
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Dai
- Department of Geriatrics, Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Jin
- Department of Geriatrics, Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Yuan Huang
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Jia
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Li
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Fan
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Liu
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Wang
- Department of Geriatrics, Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Zhao Z, Wang L, Yang C, Zhao T, Li L, Hu L, Wu D, Rong R, Xu M, Zhu T. Soluble FGL2 induced by tumor necrosis factor-α and interferon-γ in CD4+ T cells through MAPK pathway in human renal allograft acute rejection. J Surg Res 2013; 184:1114-22. [PMID: 23664593 DOI: 10.1016/j.jss.2013.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/27/2013] [Accepted: 04/05/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Acute rejection (AR), initiated by alloreactive CD4(+) T cells, hampers allograft survival. Soluble fibrinogen-like protein 2 (sFGL2) is a novel effector of CD4(+) T cells. We previously found that serum sFGL2 significantly increased in renal allograft recipients with AR. In this study, sFGL2 secretion by CD4(+) T cells and its mechanism were further explored both in vivo and in vitro. MATERIALS AND METHODS Forty cases of living-related renal transplant recipients with biopsy-proven AR or stable renal function were collected and detected serum sFGL2, tumor necrosis factor (TNF)-α and interferon (IFN)-γ, and peripheral CD4(+) T cells. In vitro, the isolated human CD4(+) T cells were stimulated by TNF-α or IFN-γ. sFGL2 in the supernatant and mitogen-activated protein kinase (MAPK) proteins in the CD4(+) T cells were investigated. Approval for this study was obtained from the Ethics Committee of Fudan University. RESULTS sFGL2, TNF-α, IFN-γ, and CD4(+) T cells were significantly increased in the peripheral blood of renal allograft recipients with AR. Stimulation with 1000 U/mL TNF-α or 62.5 U/mL IFN-γ for 48 h provided an optimal condition for CD4(+) T cells to secrete sFGL2 in vitro. Phosphorylated (p-) c-Jun N-terminal kinase was remarkably upregulated in the activated CD4(+) T cells, whereas no significant changes were found in p-p38 MAPK or p-ERK1/2 expression. Furthermore, inhibition of c-Jun N-terminal kinase significantly reduced sFGL2 secretion by CD4(+) T cells. CONCLUSIONS sFGL2 secretion by CD4(+) T cells can be induced with TNF-α and IFN-γ stimulation through MAPK signaling in renal allograft AR. Our study suggests that sFGL2 is a potential mediator in the pathogenesis of allograft rejection.
Collapse
Affiliation(s)
- Zitong Zhao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ye XH, Chen TZ, Huai JP, Lu GR, Zhuge XJ, Chen RP, Chen WJ, Wang C, Huang ZM. Correlation of fibrinogen-like protein 2 with progression of acute pancreatitis in rats. World J Gastroenterol 2013; 19:2492-2500. [PMID: 23674850 PMCID: PMC3646139 DOI: 10.3748/wjg.v19.i16.2492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/07/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine fibrinogen-like protein 2 (fgl2) expression during taurocholate-induced acute pancreatitis progression in rats and its correlation with pancreatic injury severity.
METHODS: Forty-eight male Sprague-Dawley rats were randomly divided into the severe acute pancreatitis (SAP) group (n = 24) and the sham operation (SO) group (n = 24). Sodium taurocholate (4% at doses of 1 mL/kg body weight) was retrogradely injected into the biliopancreatic ducts of the rats to induce SAP. Pancreatic tissues were prepared immediately after sacrifice. At the time of sacrifice, blood was obtained for determination of serum amylase activity and isolation of peripheral blood mononuclear cells (PBMCs). Pancreatic tissue specimens were obtained for routine light microscopy including hematoxylin and eosin staining, and the severity of pancreatic injury was evaluated 1, 4 and 8 h after induction. Expression of fgl2 mRNA was measured in the pancreas and PBMCs using reverse transcription polymerase chain reaction. Expression of fgl2 protein was evaluated in pancreatic tissues using Western blotting and immunohistochemical staining. Masson staining was also performed to observe microthrombosis.
RESULTS: At each time point, levels of fgl2 mRNAs in pancreatic tissues and PBMCs were higher (P < 0.05) in the SAP group than in the SO group. For pancreatic tissue in SAP vs SO, the levels were: after 1 h, 3.911 ± 1.277 vs 1.000 ± 0.673; after 4 h, 9.850 ± 3.095 vs 1.136 ± 0.609; and after 8 h, 12.870 ± 3.046 vs 1.177 ± 0.458. For PBMCs in SAP vs SO, the levels were: after 1 h, 2.678 ± 1.509 vs 1.000 ± 0.965; after 4 h, 6.922 ± 1.984 vs 1.051 ± 0.781; and after 8 h, 13.533 ± 6.575 vs 1.306 ± 1.179. Levels of fgl2 protein expression as determined by Western blotting and immunohistochemical staining were markedly up-regulated (P < 0.001) in the SAP group compared with those in the SO group. For Western blotting in SAP vs SO, the results were: after 1 h, 2.183 ± 0.115 vs 1.110 ± 0.158; after 4 h, 2.697 ± 0.090 vs 0.947 ± 0.361; and after 8 h, 3.258 ± 0.094 vs 1.208 ± 0.082. For immunohistochemical staining in SAP vs SO, the results were: after 1 h, 1.793 ± 0.463 vs 0.808 ± 0.252; after 4 h, 4.535 ± 0.550 vs 0.871 ± 0.318; and after 8 h, 6.071 ± 0.941 vs 1.020 ± 0.406. Moreover, we observed a positive correlation in the pancreas (r = 0.852, P < 0.001) and PBMCs (r = 0.735, P < 0.001) between fgl2 expression and the severity of pancreatic injury. Masson staining showed that microthrombosis (%) in rats with SAP was increased (P < 0.001) compared with that in the SO group and it was closely correlated with fgl2 expression in the pancreas (r = 0.842, P < 0.001). For Masson staining in SAP vs SO, the results were: after 1 h, 26.880 ± 9.031 vs 8.630 ± 3.739; after 4 h, 53.750 ± 19.039 vs 8.500 ± 4.472; and after 8 h, 80.250 ± 12.915 vs 10.630 ± 7.003.
CONCLUSION: Microthrombosis due to fgl2 overexpression contributes to pancreatic impairment in rats with SAP, and fgl2 level may serve as a biomarker during early stages of disease.
Collapse
|
9
|
Liu Y, Xu L, Zeng Q, Wang J, Wang M, Xi D, Wang X, Yang D, Luo X, Ning Q. Downregulation of FGL2/prothrombinase delays HCCLM6 xenograft tumour growth and decreases tumour angiogenesis. Liver Int 2012; 32:1585-95. [PMID: 22925132 DOI: 10.1111/j.1478-3231.2012.02865.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/22/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fibrinogen-like protein 2 (FGL2), which directly generates thrombin from prothrombin without activation of the conventional coagulation cascade, was shown to be overexpressed in various human malignant tumours. AIMS Herein, we aimed to investigate its expression pattern, biological function and mechanism of action in hepatocellular carcinoma (HCC). METHODS FGL2 expression and colocalization with fibrin was examined in 15 HCC tissues. FGL2 downregulation was performed by targeting microRNA in a HCCLM6 cell line in which FGL2 was highly expressed in xenografts of nude mice. The effects of FGL2 knockdown on tumour growth and angiogenesis were evaluated in vitro and in vivo. Cytometric bead arrays were employed to identify FGL2-regulated signalling pathways. RESULTS FGL2 was overexpressed in HCC tissues and colocalized with fibrin deposition. Knockdown of FGL2 expression in HCCLM6 cells (hFGL2(low) HCCLM6) resulted in delayed xenografts tumour growth within an observation period of 42 days and decreased vascularization, which was accompanied by decreased phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). In vitro hFGL2(low) HCCLM6 cells exhibited decreased proliferation without significant induction of apoptosis. Overexpression of FGL2 in HCCLM6 cells or addition of recombinant hFGL2 protein induced phosphorylation of p38-MAPK and ERK1/2 involving protease-activated receptors (PARs).activation. CONCLUSIONS FGL2 contributes to HCC tumour growth and angiogenesis in a thrombin-dependent manner, and downregulation of its expression might be of therapeutic significance in HCC.
Collapse
Affiliation(s)
- Yanling Liu
- Department and Institute of Infectious Disease, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|