1
|
Feng C, Ma F, Hu C, Ma JA, Wang J, Zhang Y, Wu F, Hou T, Jiang S, Wang Y, Feng Y. SOX9/miR-130a/CTR1 axis modulates DDP-resistance of cervical cancer cell. Cell Cycle 2018; 17:448-458. [PMID: 29099271 DOI: 10.1080/15384101.2017.1395533] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cisplatin (DDP) -based chemotherapy is a standard strategy for cervical cancer, while chemoresistance remains a huge challenge. Copper transporter protein 1 (CTR1), a copper influx transporter required for high affinity copper (probably reduced Cu I) transport into the cell, reportedly promotes a significant fraction of DDP internalization in tumor cells. In the present study, we evaluated the function of CTR1 in the cell proliferation of cervical cancer upon DDP treatment. MicroRNAs (miRNAs) have been regarded as essential regulators of cell proliferation, apoptosis, migration, as well as chemoresistance. By using online tools, we screened for candidate miRNAs potentially regulate CTR1, among which miR-130a has been proved to promote cervical cancer cell proliferation through targeting PTEN in our previous study. In the present study, we investigated the role of miR-130a in cervical cancer chemoresistance to DDP, and confirmed the binding of miR-130a to CTR1. SOX9 also reportedly act on cancer chemoresistance. In the present study, we revealed that SOX9 inversely regulated miR-130a through direct targeting the promoter of miR-130a. Consistent with previous studies, SOX9 could affect cervical cancer chemoresistance to DDP. Taken together, we demonstrated a SOX9/miR-130a/CTR1 axis which modulated the chemoresistance of cervical cancer cell to DDP, and provided promising targets for dealing with the chemoresistance of cervical cancer.
Collapse
Affiliation(s)
- Chenzhe Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China,Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Fang Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jin-An Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jingjing Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yang Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Tao Hou
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shun Jiang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yapeng Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yeqian Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
2
|
Xu Z, Mei J, Tan Y. Baicalin attenuates DDP (cisplatin) resistance in lung cancer by downregulating MARK2 and p-Akt. Int J Oncol 2016; 50:93-100. [PMID: 27878245 DOI: 10.3892/ijo.2016.3768] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
DDP (cisplatin) resistance in lung cancer has been widely reported. Baicalin is a flavone glycoside found in genus Scutellaria. However, the effects of baicalin on DDP resistance in lung cancer are unclear. The aim of present study was to investigate effects of combination of baicalin and DDP on proliferation and invasion of human lung cancer cells, and explore possible mechanisms. MTT assay was utilized to evaluate effects of baicalin and DDP on the proliferation of A549 and A549/DPP (DPP-resistant) human lung cancer cells. The probability sum method was used to determine effects of the drug combination. Transwell invasion assay was utilized to detect tumor cell invasion. The mRNA expression of MARK2 in A549 and A549/DPP cells was detected by qPCR. Protein expression of MARK2, p-Akt and Akt was detected by western blot analysis. Baicalin and DPP when used alone inhibited the proliferation of A549 and A549/DDP cells in a dose-dependent manner at 24 and 48 h. For A549 cells, baicalin (8 µg/ml) antagonized DDP (1, 2, 4 and 8 µg/ml) at 24 h. For A549/DDP cells, baicalin and DDP were additive when the concentration of DDP was 4 µg/ml at 24 h. Effects of baicalin and DDP on proliferation inhibition were additive and synergistic when concentrations of DDP were 8 and 4 µg/ml, respectively, at 48 h for both A549 and A549/DDP cells. When baicalin (8 µg/ml) and DDP (4 µg/ml) were combined, the inhibitory rate of tumor cell invasion increased markedly compared to DPP or baicalin alone groups in both A549 and A549/DDP cells. A549/DDP cells had significantly higher MARK2 mRNA levels and protein expression of MARK2 and p-Akt. Baicalin decreased MARK2 mRNA and protein expression of MARK2 and p-Akt in A549/DDP cells dose-dependently. In conclusion, baicalin and DDP were synergistic at inhibiting proliferation and invasion of human lung cancer cells at appropriate dosages and incubation time in the presence or absence of DDP resistance. The attenuation of DDP resistance was associated with downregulation of MARK2 and p-Akt.
Collapse
Affiliation(s)
- Zhiwei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yan Tan
- Department of Intensive Care Unit, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 201399, P.R. China
| |
Collapse
|
3
|
YU YANG, YU XIAOFENG, MA JIANXIA, TONG YILI, YAO JIANFENG. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. Int J Oncol 2016; 49:285-93. [DOI: 10.3892/ijo.2016.3507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/21/2016] [Indexed: 11/05/2022] Open
|
4
|
Hagen L, Sharma A, Aas PA, Slupphaug G. Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:84-90. [PMID: 25448019 DOI: 10.1016/j.bbapap.2014.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 11/16/2022]
Abstract
Transient transfection of mammalian cells with plasmid expression vectors and chemical transfection reagents is widely used to study protein transport and dynamics as well as phenotypic alterations mediated by the overexpressed protein. Despite the undisputed impact of this technique, surprisingly little is known about the cellular effects mediated by the transfection process per se. Conceivably, off-target effects could have implications upon proteins or processes being studied and understanding the molecular pathways affected would add value to the interpretation of experimental observations subsequent to cell transfection. Here we have used a SILAC-based proteomic approach to study differentially expressed proteins after transfection of HeLa cells with ECFP vector using a commonly employed non-liposome based transfection reagent, Fugene®HD. Whereas the transfection reagent itself mediated minimal effects upon protein expression, 11 proteins were found to be significantly upregulated after transfection, all of which were associated with an interferon type I/II response. The upregulated proteins might potentially inflict major cellular processes such as RNA splicing, chromatin remodeling, post-translational protein modification and cell cycle control. The results were validated by western analysis as well as quantitative RT-PCR and this demonstrated that an essentially identical response was induced in HeLa by transfection using an empty pUC18 vector, which does not contain a mammalian virus promoter, as well as a liposome-based transfection reagent, Lipofectamine(TM)2000. Notably, no induction of the interferon response was observed in HEK293 cells, suggesting that these cells might be preferable to HeLa to avoid undesired off-target effects in transfection studies encompassing interferon-signaling and antiviral responses.
Collapse
Affiliation(s)
- Lars Hagen
- Department of Cancer Research and Molecular Medicine and PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine and PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Per Arne Aas
- Department of Cancer Research and Molecular Medicine and PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine and PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway.
| |
Collapse
|
5
|
Oliveira LB, Louvanto K, Ramanakumar AV, Franco EL, Villa LL, For The Ludwig-McGill Cohort Study. Polymorphism in the promoter region of the Toll-like receptor 9 gene and cervical human papillomavirus infection. J Gen Virol 2013; 94:1858-1864. [PMID: 23677790 DOI: 10.1099/vir.0.052811-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polymorphism in the Toll-like receptor (TLR) 9 gene has been shown to have a significant role in some diseases; however, little is known about its possible role in the natural history of human papillomavirus (HPV) infections. We investigated the association between a single-nucleotide polymorphism (SNP) (rs5743836) in the promoter region of TLR9 (T1237C) and type-specific HPV infections. Specimens were derived from a cohort of 2462 women enrolled in the Ludwig-McGill Cohort Study. We randomly selected 500 women who had a cervical HPV infection detected at least once during the study as cases. We defined two control groups: (i) a random sample of 300 women who always tested HPV negative, and (ii) a sample of 234 women who were always HPV negative but had a minimum of ten visits during the study. TLR9 genotyping was performed using bidirectional PCR amplification of specific alleles. Irrespective of group, the WT homozygous TLR9 genotype (TT) was the most common form, followed by the heterozygous (TC) and the mutant homozygous (CC) forms. There were no consistent associations between polymorphism and infection risk, either overall or by type or species. Likewise, there were no consistently significant associations between polymorphism and HPV clearance or persistence. We concluded that this polymorphism in the promoter region of TLR9 gene does not seem to have a mediating role in the natural history of the HPV infection.
Collapse
Affiliation(s)
- Lucas Boeno Oliveira
- Center of Investigation in Translational Oncology, Instituto do Câncer de Estado de São Paulo, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Karolina Louvanto
- Division of Cancer Epidemiology, McGill University, Montreal, Quebec, H2W 1S6 Canada
| | | | - Eduardo L Franco
- Division of Cancer Epidemiology, McGill University, Montreal, Quebec, H2W 1S6 Canada
| | - Luisa L Villa
- HPV Institute, School of Medicine, Santa Casa de São Paulo, and Dept Radiology and Basic Oncology, School of Medicine, University of São Paulo, São Paulo, Brazil.,Center of Investigation in Translational Oncology, Instituto do Câncer de Estado de São Paulo, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Sommariva M, de Cesare M, Meini A, Cataldo A, Zaffaroni N, Tagliabue E, Balsari A. High efficacy of CpG-ODN, cetuximab and cisplatin combination for very advanced ovarian xenograft tumors. J Transl Med 2013; 11:25. [PMID: 23360557 PMCID: PMC3571944 DOI: 10.1186/1479-5876-11-25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/23/2013] [Indexed: 12/22/2022] Open
Abstract
Background To mimic clinical treatment situations in advanced human ovarian disease, we tested the efficacy of CpG-oligodeoxynucleotides (CpG-ODN), synthetic DNA sequences recognized by Toll-like receptor 9 and able to induce innate/adaptive immune responses, in combination with other possible therapeutic reagents in ovarian carcinoma ascites-bearing athymic mice. Methods Mice injected i.p. with IGROV-1 ovarian cancer cells were treated at different stages of ascites progression for 4 weeks with CpG-ODN, alone or in combination with Bevacizumab, Polyinosinic:Polycytidylic acid (Poly(I):Poly(C)), Gefitinib, Cetuximab and Cisplatin. Median survival time (MST) was calculated for each group. IGROV-1 cells treated or not with Cetuximab were assayed for antibody-dependent cellular cytotoxicity by 51Cr-release assay, and for macrophage antibody-dependent cell-mediated phagocytosis by flow cytometry. Results In mice treated when ascitic fluid began to accumulate, CpG-ODN combined with Bevacizumab, Poly(I):Poly(C) or Gefitinib did not significantly increase MST as compared with that using CpG-ODN alone, whereas MST in mice treated with CpG-ODN plus Cetuximab was significantly increased (>103 days for combination vs 62 days for CpG alone; P = 0.0008), with 4/8 mice alive at the end of the experiment. In experiments in mice showing increased abdominal volume and body weight (27.9 ± 0.8 g after vs 23 ± 1.1 g before tumor cell injection), treatment with Cisplatin in addition to CpG-ODN/Cetuximab led to significantly increased MST (105.5 days; P = 0.001), with all mice still alive at 85 days, over that using CpG-ODN/Cetuximab (66 days), Cetuximab/Cisplatin (18.5 days), Cisplatin (23 days) or saline (16 days). At a very advanced stage of disease (body weight: 31.4 ± 0.9 g), when more than half of control mice had to be sacrificed 6 days after starting treatments, the triple-combination therapy still increased MST (45 days; P = 0.0089) vs controls. Conclusions CpG-ODN combination therapies that enhance the immune response in the tumor microenvironment and concomitantly target tumor cells are highly efficacious even in experimental advanced malignancies. Although differences in the distribution of TLR9 in mice and humans and the enrichment of this receptor on innate immune cells of athymic mice must be considered, our results indicate a promising strategy to treat ovarian cancer patients with bulky ascites.
Collapse
Affiliation(s)
- Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20133, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Raykov Z, Grekova SP, Hörlein R, Leuchs B, Giese T, Giese NA, Rommelaere J, Zawatzky R, Daeffler L. TLR-9 contributes to the antiviral innate immune sensing of rodent parvoviruses MVMp and H-1PV by normal human immune cells. PLoS One 2013; 8:e55086. [PMID: 23383065 PMCID: PMC3558501 DOI: 10.1371/journal.pone.0055086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/17/2012] [Indexed: 12/24/2022] Open
Abstract
The oncotropism of Minute Virus of Mice (MVMp) is partially related to the stimulation of an antiviral response mediated by type-I interferons (IFNs) in normal but not in transformed mouse cells. The present work was undertaken to assess whether the oncotropism displayed against human cells by MVMp and its rat homolog H-1PV also depends on antiviral mechanisms and to identify the pattern recognition receptor (PRR) involved. Despite their low proliferation rate which represents a drawback for parvovirus multiplication, we used human peripheral blood mononuclear cells (hPBMCs) as normal model specifically because all known PRRs are functional in this mixed cell population and moreover because some of its subsets are among the main IFN producers upon infections in mammals. Human transformed models consisted in lines and tumor cells more or less permissive to both parvoviruses. Our results show that irrespective of their permissiveness, transformed cells do not produce IFNs nor develop an antiviral response upon parvovirus infection. However, MVMp- or H-1PV-infected hPBMCs trigger such defense mechanisms despite an absence of parvovirus replication and protein expression, pointing to the viral genome as the activating element. Substantial reduction of an inhibitory oligodeoxynucleotide (iODN) of the latter IFN production identified TLR-9 as a potential PRR for parvoviruses in hPBMCs. However, neither the iODN treatment nor an antibody-induced neutralization of the IFN-triggered effects restored parvovirus multiplication in these cells as expected by their weak proliferation in culture. Finally, given that a TLR-9 activation could also not be observed in parvovirus-infected human lines reported to be endowed with a functional TLR-9 pathway (Namalwa, Raji, and HEK293-TLR9(+/+)), our data suggest that transformed human cells do not sense MVMp or H-1PV either because of an absence of PRR expression or an intrinsic, or virus-driven defect in the endosomal sensing of the parvovirus genomes by TLR-9.
Collapse
Affiliation(s)
- Zahari Raykov
- Infection and Cancer Program, Division F010 and Institut National de la Santé et de la Recherche Médicale INSERM U701, German Cancer Research Center, Heidelberg, Germany
| | - Svitlana P. Grekova
- Infection and Cancer Program, Division F010 and Institut National de la Santé et de la Recherche Médicale INSERM U701, German Cancer Research Center, Heidelberg, Germany
| | - Rita Hörlein
- Infection and Cancer Program, Division F010 and Institut National de la Santé et de la Recherche Médicale INSERM U701, German Cancer Research Center, Heidelberg, Germany
| | - Barbara Leuchs
- Infection and Cancer Program, Division F010 and Institut National de la Santé et de la Recherche Médicale INSERM U701, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia A. Giese
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jean Rommelaere
- Infection and Cancer Program, Division F010 and Institut National de la Santé et de la Recherche Médicale INSERM U701, German Cancer Research Center, Heidelberg, Germany
| | - Rainer Zawatzky
- Infection and Cancer Program, Division F030 Department Viral Transformation Mechanisms, German Cancer Research Center, Heidelberg, Germany
| | - Laurent Daeffler
- Infection and Cancer Program, Division F010 and Institut National de la Santé et de la Recherche Médicale INSERM U701, German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|