1
|
Eiró-Quirino L, Yoshino FK, de Amorim GC, de Araújo DB, Barbosa GB, de Souza LV, Dos Santos MF, Hamoy MKO, Dos Santos RG, Amóras LHB, Gurgel do Amaral AL, Hartcopff PFP, de Souza RV, da Silva Deiga Y, Hamoy M. Recording of hippocampal activity on the effect of convulsant doses of caffeine. Biomed Pharmacother 2024; 178:117148. [PMID: 39032287 DOI: 10.1016/j.biopha.2024.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Seizures occur when there is a hyper-excitation of the outer layer of the brain, with subsequent excessive synchrony in a group of neurons. According to the World Health Organization (WHO), an estimated 50 million people are affected by this disease, a third of whom are resistant to the treatments available on the market. Caffeine (1,3,7-trimethylxanthine), which belongs to the purine alkaloid family, is the most widely consumed psychoactive drug in the world. It is ingested by people through drinks containing this substance, such as coffee, and as an adjuvant in analgesic therapy with non-steroidal antiflammatory drugs. The present study evaluated the electrocorticographic changes observed in the hippocampus of Wistar rats subjected to acute doses of caffeine (150 mg/kg i.p), which represents a toxic dose of caffeine corresponding to an estimated acute intake of more than 12 cups of coffee to record its convulsant activity. Our results showed, for the first time, that the administration of high doses of caffeine (150 mg/kg i.p.) in rats caused an increase in the spectral distribution of power in all frequency bands and suggested the appearance of periods of ictal and interictal peaks in the electrocorticogram (ECog). We have also shown that the anticonvulsants phenytoin, diazepam and phenobarbital have a satisfactory response when associated with caffeine.
Collapse
Affiliation(s)
- Luciana Eiró-Quirino
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil.
| | - Felipe Kiyoshi Yoshino
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Gloria Calandrini de Amorim
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Daniella Bastos de Araújo
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Gabriela Brito Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Luana Vasconcelos de Souza
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Murilo Farias Dos Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Maria Klara Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Rodrigo Gonçalves Dos Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Laís Helena Baptista Amóras
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Anthony Lucas Gurgel do Amaral
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Priscille Fidelis Pacheco Hartcopff
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Raíssa Vieira de Souza
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Yris da Silva Deiga
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Sciences Institute, Federal University of Para, Belem, Para, Brazil.
| |
Collapse
|
2
|
Baltos JA, Casillas-Espinosa PM, Rollo B, Gregory KJ, White PJ, Christopoulos A, Kwan P, O'Brien TJ, May LT. The role of the adenosine system in epilepsy and its comorbidities. Br J Pharmacol 2024; 181:2143-2157. [PMID: 37076128 DOI: 10.1111/bph.16094] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Epilepsy is one of the most serious and common chronic neurological conditions, characterised by recurrent hypersynchronous electrical activity in the brain that lead to seizures. Despite over 50 million people being affected worldwide, only ~70% of people with epilepsy have their seizures successfully controlled with current pharmacotherapy, and many experience significant psychiatric and physical comorbidities. Adenosine, a ubiquitous purine metabolite, is a potent endogenous anti-epileptic substance that can abolish seizure activity via the adenosine A1 G protein-coupled receptor. Activation of A1 receptors decreases seizure activity in animal models, including models of drug-resistant epilepsy. Recent advances have increased our understanding of epilepsy comorbidities, highlighting the potential for adenosine receptors to modulate epilepsy-associated comorbidities, including cardiovascular dysfunction, sleep and cognition. This review provides an accessible resource of the current advances in understanding the adenosine system as a therapeutic target for epilepsy and epilepsy-associated comorbidities. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Neuromedicines Discovery Centre, Monash University, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Wu J, Wang Z, Wang C, Wang Y, Li H, Luo H, Li H, Wang F, Li D, Yang J. Research Progress on the Synthesis of Nitrogen-Containing Compounds with Cyanamide as a Building Block. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Adenosine A 2A receptors control synaptic remodeling in the adult brain. Sci Rep 2022; 12:14690. [PMID: 36038626 PMCID: PMC9424208 DOI: 10.1038/s41598-022-18884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanisms underlying circuit re-wiring in the mature brain remains ill-defined. An eloquent example of adult circuit remodelling is the hippocampal mossy fiber (MF) sprouting found in diseases such as temporal lobe epilepsy. The molecular determinants underlying this retrograde re-wiring remain unclear. This may involve signaling system(s) controlling axon specification/growth during neurodevelopment reactivated during epileptogenesis. Since adenosine A2A receptors (A2AR) control axon formation/outgrowth and synapse stabilization during development, we now examined the contribution of A2AR to MF sprouting. A2AR blockade significantly attenuated status epilepticus(SE)-induced MF sprouting in a rat pilocarpine model. This involves A2AR located in dentate granule cells since their knockdown selectively in dentate granule cells reduced MF sprouting, most likely through the ability of A2AR to induce the formation/outgrowth of abnormal secondary axons found in rat hippocampal neurons. These A2AR should be activated by extracellular ATP-derived adenosine since a similar prevention/attenuation of SE-induced hippocampal MF sprouting was observed in CD73 knockout mice. These findings demonstrate that A2AR contribute to epilepsy-related MF sprouting, most likely through the reactivation of the ability of A2AR to control axon formation/outgrowth observed during neurodevelopment. These results frame the CD73-A2AR axis as a regulator of circuit remodeling in the mature brain.
Collapse
|
5
|
Lambertucci C, Marucci G, Catarzi D, Colotta V, Francucci B, Spinaci A, Varano F, Volpini R. A2A Adenosine Receptor Antagonists and their Potential in Neurological Disorders. Curr Med Chem 2022; 29:4780-4795. [PMID: 35184706 DOI: 10.2174/0929867329666220218094501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Endogenous nucleoside adenosine modulates a number of physiological effects through interaction with P1 purinergic receptors. All of them are G protein coupled receptors and, to date, four subtypes have been characterized and named A1, A2A, A2B, and A3. In recent years adenosine receptors, particularly the A2A subtype, have become attractive targets for the treatment of several neurodegenerative disorders, known to involve neuroinflammation, like Parkinson's and Alzheimer's diseases, multiple sclerosis and neuropsychiatric conditions. In fact, it has been demonstrated that inhibition of A2A adenosine receptors exerts neuroprotective effects counteracting neuroinflammatory processes and astroglial and microglial activation. The A2A adenosine receptor antagonist istradefylline, developed by Kyowa Hakko Kirin Inc., was approved in Japan as adjunctive therapy for the treatment of Parkinson's disease and very recently it was approved also by the US Food and Drug Administration. These findings pave the way for new therapeutic opportunities, so, in this review, a summary of the most relevant and promising A2A adenosine receptor antagonists will be presented along with their preclinical and clinical studies in neuroinflammation related diseases.
Collapse
Affiliation(s)
- Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| | - Rosaria Volpini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
6
|
Liu K, Jin X, Zhang X, Lian H, Ye J. The mechanisms of nucleotide actions in insulin resistance. J Genet Genomics 2022; 49:299-307. [DOI: 10.1016/j.jgg.2022.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
|
7
|
Tescarollo FC, Rombo DM, DeLiberto LK, Fedele DE, Alharfoush E, Tomé ÂR, Cunha RA, Sebastião AM, Boison D. Role of Adenosine in Epilepsy and Seizures. J Caffeine Adenosine Res 2020; 10:45-60. [PMID: 32566903 PMCID: PMC7301316 DOI: 10.1089/caff.2019.0022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an endogenous anticonvulsant and neuroprotectant of the brain. Seizure activity produces large quantities of adenosine, and it is this seizure-induced adenosine surge that normally stops a seizure. However, within the context of epilepsy, adenosine plays a wide spectrum of different roles. It not only controls seizures (ictogenesis), but also plays a major role in processes that turn a normal brain into an epileptic brain (epileptogenesis). It is involved in the control of abnormal synaptic plasticity and neurodegeneration and plays a major role in the expression of comorbid symptoms and complications of epilepsy, such as sudden unexpected death in epilepsy (SUDEP). Given the important role of adenosine in epilepsy, therapeutic strategies are in development with the goal to utilize adenosine augmentation not only for the suppression of seizures but also for disease modification and epilepsy prevention, as well as strategies to block adenosine A2A receptor overfunction associated with neurodegeneration. This review provides a comprehensive overview of the role of adenosine in epilepsy.
Collapse
Affiliation(s)
- Fabio C. Tescarollo
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Diogo M. Rombo
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, Lisbon, Portugal
- Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Lindsay K. DeLiberto
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Denise E. Fedele
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Enmar Alharfoush
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Ângelo R. Tomé
- Faculty of Science and Technology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana M. Sebastião
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, Lisbon, Portugal
- Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Detlev Boison
- Deptartment of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
8
|
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020; 9:E785. [PMID: 32213945 PMCID: PMC7140859 DOI: 10.3390/cells9030785] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosine is involved in a range of physiological and pathological effects through membrane-bound receptors linked to G proteins. There are four subtypes of adenosine receptors, described as A1AR, A2AAR, A2BAR, and A3AR, which are the center of cAMP signal pathway-based drug development. Several types of agonists, partial agonists or antagonists, and allosteric substances have been synthesized from these receptors as new therapeutic drug candidates. Research efforts surrounding A1AR and A2AAR are perhaps the most enticing because of their concentration and affinity; however, as a consequence of distressing conditions, both A2BAR and A3AR levels might accumulate. This review focuses on the biological features of each adenosine receptor as the basis of ligand production and describes clinical studies of adenosine receptor-associated pharmaceuticals in human diseases.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| |
Collapse
|
9
|
Zavala-Tecuapetla C, Orozco-Suarez S, Manjarrez J, Cuellar-Herrera M, Vega-Garcia A, Buzoianu-Anguiano V. Activation of adenosine receptors modulates the efflux transporters in brain capillaries and restores the anticonvulsant effect of carbamazepine in carbamazepine resistant rats developed by window-pentylenetetrazole kindling. Brain Res 2019; 1726:146516. [PMID: 31634453 DOI: 10.1016/j.brainres.2019.146516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/14/2023]
Abstract
Up-regulation of efflux transporters in brain capillaries may lead to the decreased therapeutic efficacy of antiepileptic drugs in patients with Drug Resistant Epilepsy. Adenosine receptor activation in brain capillaries can modulate blood-brain barrier permeability by decreasing the protein levels and function of efflux transporters. Therefore, we aimed to investigate whether the activation of adenosine receptors improves convulsions outcome in carbamazepine (CBZ) resistant animals and modulates the protein levels of efflux transporters (P-GP, MRP1, MRP2) in brain capillaries. We employed the window-pentylenetetrazol (PTZ) kindling model to develop CBZ resistant rats by CBZ administration during the post-kindling phase, and tested if these animals displayed subsequent resistance to other antiepileptic drugs. Crucially, we investigated if the administration of a broad-spectrum adenosine agonist (NECA) improves convulsions control in CBZ resistant rats. Of potential therapeutic relevance, in CBZ resistant rats NECA restored the anticonvulsant effect of CBZ. We also evaluated how the resistance to CBZ and the activation of adenosine receptors with NECA affect protein levels of efflux transporters in brain capillaries, as quantified by western blot. While CBZ resistance was associated with the up-regulation of both P-GP/MRP2 in brain capillaries, with the administration of NECA in CBZ resistant rats, we observed a decrease of P-GP and an increase of MRP2 levels, in brain capillaries. Since the activation of adenosine receptors improves the outcome of convulsions probably through the modulation of the efflux transporters protein levels in brain capillaries, adenosine agonists could be useful as an adjunct therapy for the control of Drug Resistant Epilepsy.
Collapse
Affiliation(s)
- C Zavala-Tecuapetla
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, 14269 Mexico City, Mexico.
| | - S Orozco-Suarez
- Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center XXI Century, IMSS, Cuauhtemoc 330, Doctores, 06720 Mexico City, Mexico
| | - J Manjarrez
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, 14269 Mexico City, Mexico
| | - M Cuellar-Herrera
- Epilepsy Clinic, Hospital General de México, Dr. Eduardo Liceaga, Dr. Balmis 148, Doctores, 06720 Mexico City, Mexico
| | - A Vega-Garcia
- Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center XXI Century, IMSS, Cuauhtemoc 330, Doctores, 06720 Mexico City, Mexico; Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, C.U., 04510 Mexico City, Mexico
| | - V Buzoianu-Anguiano
- Medical Research Unit in Neurological Diseases, Specialty Hospital, National Medical Center XXI Century, IMSS, Cuauhtemoc 330, Doctores, 06720 Mexico City, Mexico
| |
Collapse
|
10
|
Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol 2019; 183:101682. [PMID: 31454545 DOI: 10.1016/j.pneurobio.2019.101682] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
As the largest family of membrane proteins in the human genome, G protein-coupled receptors (GPCRs) constitute the targets of more than one-third of all modern medicinal drugs. In the central nervous system (CNS), widely distributed GPCRs in neuronal and nonneuronal cells mediate numerous essential physiological functions via regulating neurotransmission at the synapses. Whereas their abnormalities in expression and activity are involved in various neuropathological processes. CNS conditions thus remain highly represented among the indications of GPCR-targeted agents. Mounting evidence from a large number of animal studies suggests that GPCRs play important roles in the regulation of neuronal excitability associated with epilepsy, a common CNS disease afflicting approximately 1-2% of the population. Surprisingly, none of the US Food and Drug Administration (FDA)-approved (>30) antiepileptic drugs (AEDs) suppresses seizures through acting on GPCRs. This disparity raises concerns about the translatability of these preclinical findings and the druggability of GPCRs for seizure disorders. The currently available AEDs intervene seizures predominantly through targeting ion channels and have considerable limitations, as they often cause unbearable adverse effects, fail to control seizures in over 30% of patients, and merely provide symptomatic relief. Thus, identifying novel molecular targets for epilepsy is highly desired. Herein, we focus on recent progresses in understanding the comprehensive roles of several GPCR families in seizure generation and development of acquired epilepsy. We also dissect current hurdles hindering translational efforts in developing GPCRs as antiepileptic and/or antiepileptogenic targets and discuss the counteracting strategies that might lead to a potential cure for this debilitating CNS condition.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
11
|
Neuronal Adenosine A2A Receptors Are Critical Mediators of Neurodegeneration Triggered by Convulsions. eNeuro 2018; 5:eN-NWR-0385-18. [PMID: 30627646 PMCID: PMC6325550 DOI: 10.1523/eneuro.0385-18.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/20/2022] Open
Abstract
Neurodegeneration is a process transversal to neuropsychiatric diseases and the understanding of its mechanisms should allow devising strategies to prevent this irreversible step in brain diseases. Neurodegeneration caused by seizures is a critical step in the aggravation of temporal lobe epilepsy, but its mechanisms remain undetermined. Convulsions trigger an elevation of extracellular adenosine and upregulate adenosine A2A receptors (A2AR), which have been associated with the control of neurodegenerative diseases. Using the rat and mouse kainate model of temporal lobe epilepsy, we now tested whether A2AR control convulsions-induced hippocampal neurodegeneration. The pharmacological or genetic blockade of A2AR did not affect kainate-induced convulsions but dampened the subsequent neurotoxicity. This neurotoxicity began with a rapid A2AR upregulation within glutamatergic synapses (within 2 h), through local translation of synaptic A2AR mRNA. This bolstered A2AR-mediated facilitation of glutamate release and of long-term potentiation (LTP) in CA1 synapses (4 h), triggered a subsequent synaptotoxicity, heralded by decreased synaptic plasticity and loss of synaptic markers coupled to calpain activation (12 h), that predated overt neuronal loss (24 h). All modifications were prevented by the deletion of A2AR selectively in forebrain neurons. This shows that synaptic A2AR critically control synaptic excitotoxicity, which underlies the development of convulsions-induced neurodegeneration.
Collapse
|
12
|
van Waarde A, Dierckx RAJO, Zhou X, Khanapur S, Tsukada H, Ishiwata K, Luurtsema G, de Vries EFJ, Elsinga PH. Potential Therapeutic Applications of Adenosine A 2A Receptor Ligands and Opportunities for A 2A Receptor Imaging. Med Res Rev 2017; 38:5-56. [PMID: 28128443 DOI: 10.1002/med.21432] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Adenosine A2A receptors (A2A Rs) are highly expressed in the human striatum, and at lower densities in the cerebral cortex, the hippocampus, and cells of the immune system. Antagonists of these receptors are potentially useful for the treatment of motor fluctuations, epilepsy, postischemic brain damage, or cognitive impairment, and for the control of an immune checkpoint during immunotherapy of cancer. A2A R agonists may suppress transplant rejection and graft-versus-host disease; be used to treat inflammatory disorders such as asthma, inflammatory bowel disease, and rheumatoid arthritis; be locally applied to promote wound healing and be employed in a strategy for transient opening of the blood-brain barrier (BBB) so that therapeutic drugs and monoclonal antibodies can enter the brain. Increasing A2A R signaling in adipose tissue is also a potential strategy to combat obesity. Several radioligands for positron emission tomography (PET) imaging of A2A Rs have been developed in recent years. This review article presents a critical overview of the potential therapeutic applications of A2A R ligands, the use of A2A R imaging in drug development, and opportunities and limitations of PET imaging in future research.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands.,Department of Nuclear Medicine, University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Xiaoyun Zhou
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Shivashankar Khanapur
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita, Hamamatsu, Shizuoka 434-8601, Japan
| | - Kiichi Ishiwata
- Research Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama, 963-8052, Japan.,Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Gert Luurtsema
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Erik F J de Vries
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
13
|
Barros-Barbosa AR, Ferreirinha F, Oliveira Â, Mendes M, Lobo MG, Santos A, Rangel R, Pelletier J, Sévigny J, Cordeiro JM, Correia-de-Sá P. Adenosine A 2A receptor and ecto-5'-nucleotidase/CD73 are upregulated in hippocampal astrocytes of human patients with mesial temporal lobe epilepsy (MTLE). Purinergic Signal 2016; 12:719-734. [PMID: 27650530 PMCID: PMC5124012 DOI: 10.1007/s11302-016-9535-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Refractoriness to existing medications of up to 80 % of the patients with mesial temporal lobe epilepsy (MTLE) prompts for finding new antiepileptic drug targets. The adenosine A2A receptor emerges as an interesting pharmacological target since its excitatory nature partially counteracts the dominant antiepileptic role of endogenous adenosine acting via inhibitory A1 receptors. Gain of function of the excitatory A2A receptor has been implicated in a significant number of brain pathologies commonly characterized by neuronal excitotoxicity. Here, we investigated changes in the expression and cellular localization of the A2A receptor and of the adenosine-generating enzyme, ecto-5'-nucleotidase/CD73, in the hippocampus of control individuals and MTLE human patients. Western blot analysis indicates that the A2A receptor is more abundant in the hippocampus of MTLE patients compared to control individuals. Immunoreactivity against the A2A receptor predominates in astrocytes staining positively for the glial fibrillary acidic protein (GFAP). No co-localization was observed between the A2A receptor and neuronal cell markers, like synaptotagmin 1/2 (nerve terminals) and neurofilament 200 (axon fibers). Hippocampal astrogliosis observed in MTLE patients was accompanied by a proportionate increase in A2A receptor and ecto-5'-nucleotidase/CD73 immunoreactivities. Given our data, we hypothesize that selective blockade of excessive activation of astrocytic A2A receptors and/or inhibition of surplus adenosine formation by membrane-bound ecto-5'-nucleotidase/CD73 may reduce neuronal excitability, thus providing a novel therapeutic target for drug-refractory seizures in MTLE patients.
Collapse
Affiliation(s)
- Aurora R Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ângela Oliveira
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Marina Mendes
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M Graça Lobo
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Agostinho Santos
- Serviço de Patologia Forense, Instituto Nacional de Medicina Legal e Ciências Forenses-Delegação do Norte (INMLCF-DN), Porto, Portugal
| | - Rui Rangel
- Serviço de Neurocirurgia, Centro Hospitalar do Porto-Hospital Geral de Santo António (CHP-HGSA), Porto, Portugal
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, QC, Québec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, CHUL, QC, Québec, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médicine, Université Laval, QC, Québec, Canada
| | - J Miguel Cordeiro
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
14
|
A one-pot, three-component, microwave-assisted synthesis of novel 7-amino-substituted 4-aminopyrazolo[1,5-a][1,3,5]triazine-8-carbonitriles. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 2015; 35:790-848. [PMID: 25821194 DOI: 10.1002/med.21344] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD.
Collapse
Affiliation(s)
- Delia Preti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | | | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| | - Katia Varani
- Section of Pharmacology, Department of Medical Science, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
16
|
Socała K, Nieoczym D, Pieróg M, Wlaź P. Role of the adenosine system and glucose restriction in the acute anticonvulsant effect of caprylic acid in the 6 Hz psychomotor seizure test in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:44-51. [PMID: 25455587 DOI: 10.1016/j.pnpbp.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 11/16/2022]
Abstract
Although several studies have reported the acute anticonvulsant activity of caprylic acid in animal seizure models, little is known about the mechanism underlying this effect. Recently, the role of adenosine in the efficacy of the ketogenic diet has been postulated. Therefore, the present study aimed to evaluate the possible involvement of the adenosine system (in non-fasted mice) as well as the role of glucose restriction (in fasted and non-fasted mice) in the acute anticonvulsant activity of caprylic acid in the 6 Hz psychomotor seizure threshold test. We showed that the anticonvulsant effect of caprylic acid (30 mmol/kg, p.o.) was reversed by a selective adenosine A1 receptor antagonist (DPCPX, 1mg/kg, i.p.) and a selective adenosine A2A receptor antagonist (KW-6002, 1 mg/kg, p.o.) but not by glibenclamide (1 pg/mouse, i.c.v.) - the ATP-sensitive potassium (KATP) channel blocker. Co-administration of an ineffective dose of caprylic acid (20 mmol/kg) with an ineffective dose of adenosine transporter inhibitor (dipyridamole, 50 mg/kg, i.p.) significantly raised the threshold for the 6 Hz-induced seizures. A high dose of glucose (2 g/kg) significantly only diminished the anticonvulsant effect of caprylic acid (30 mmol/kg) in non-fasted mice, and this was accompanied by an increase in blood glucose level and no changes in ketone body level as compared to the caprylic acid-treated group. In both fasted and non-fasted mice treated with glucose and caprylic acid, a significant decrease in trunk blood pH occurred as compared to the control group. No alternations in motor coordination or muscular strength were noted with any drug treatment, apart from the caprylic acid and glibenclamide combination, where a significant decrease in the muscle strength was observed. The present study provides a new insight into the role of the adenosine system and low glucose usage in the mechanisms underlying the anticonvulsant effects of caprylic acid in the 6 Hz seizure test.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mateusz Pieróg
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
17
|
Lim FPL, Dolzhenko AV. 1,3,5-Triazine-based analogues of purine: From isosteres to privileged scaffolds in medicinal chemistry. Eur J Med Chem 2014; 85:371-90. [DOI: 10.1016/j.ejmech.2014.07.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/11/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
|
18
|
Masino SA, Kawamura M, Ruskin DN. Adenosine receptors and epilepsy: current evidence and future potential. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:233-55. [PMID: 25175969 PMCID: PMC6026023 DOI: 10.1016/b978-0-12-801022-8.00011-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine receptors are a powerful therapeutic target for regulating epileptic seizures. As a homeostatic bioenergetic network regulator, adenosine is perfectly suited to establish or restore an ongoing balance between excitation and inhibition, and its anticonvulsant efficacy is well established. There is evidence for the involvement of multiple adenosine receptor subtypes in epilepsy, but in particular the adenosine A1 receptor subtype can powerfully and bidirectionally regulate seizure activity. Mechanisms that regulate adenosine itself are increasingly appreciated as targets to thus influence receptor activity and seizure propensity. Taken together, established evidence for the powerful potential of adenosine-based epilepsy therapies and new strategies to influence receptor activity can combine to capitalize on this endogenous homeostatic neuromodulator.
Collapse
Affiliation(s)
- Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, Connecticut, USA.
| | - Masahito Kawamura
- Department of Pharmacology, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, Connecticut, USA
| |
Collapse
|
19
|
The imbalanced expression of adenosine receptors in an epilepsy model corrected using targeted mesenchymal stem cell transplantation. Mol Neurobiol 2013; 48:921-30. [PMID: 23783558 DOI: 10.1007/s12035-013-8480-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Adenosine inhibits epileptic episodes by interacting with G-protein-coupled receptors. This study examined the mechanism by which the inhibitory effect of adenosine becomes impaired during epileptogenesis. Dynamic changes in adenosine A1 receptors (A1Rs) and A2a receptors (A2aRs) were investigated in a kindling model of epilepsy. RT-PCR, Western blotting, and immunofluorescence results indicated that expression of A1Rs was increased in the hippocampus 24 h after kindling, but progressively decreased 1 and 6 months after kindling. Opposite changes were seen in the expression of A2aRs. This bidirectional change resulted in an imbalance between A1Rs and A2aRs and dysregulation of the adenosine system. Autologous mesenchymal stem cell (MSC) transplantation was used to correct this disorder and avoid side effects of systematic adenosine therapy. Paramagnetic iron oxide particles were used to mark and track the MSCs in vivo using MRI. The results indicated that the transplanted cells migrated along the callosum and settled at the ependymal layer. The MSCs displayed a relatively long survival time, at least 3 months. The improved AR expression and EEG findings suggested that MSC transplantation was a potentially effective means of treating refractory epilepsy.
Collapse
|