1
|
Li M, Li H, Huang H, Li Y, Qin L, Xu X, Zheng Q, Wang D, Zhang M, Sun Y, Yang Q. Identification and structural elucidation of a new cetrorelix methylene dimer impurity in cetrorelix acetate by using LC-MS/MS. J Pharm Biomed Anal 2021; 197:113946. [PMID: 33611089 DOI: 10.1016/j.jpba.2021.113946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/16/2021] [Accepted: 01/30/2021] [Indexed: 01/02/2023]
Abstract
Cetrorelix, a potent third generation of luteinizing hormone releasing hormone (LHRH) antagonist, is a synthetic decapeptide used for treatment of infertility, prostatic hypertrophy and sexual hormone-dependent tumors. The approved drug of cetrorelix (Cetrotide, Asta Medica AG, Frankfurt, Germany.), was used for prevention of premature ovulation in patients undergoing a controlled ovarian stimulation (COS), followed by oocyte pick-up and assisted reproductive techniques, and has been shown safe and effective in controlled ovarian stimulation. Nevertheless, the study of aggregation products of cetrorelix was rarely reported. A simple liquid chromatography mass spectrometry (LC-MS/MS) method was developed for separation, identification and characterization of a new cetrorelix methylene dimer impurity in cetrorelix. The chromatographic separation was achieved on an XSelect Peptide CSH ™C18 column (150 × 4.6 mm, 3.5 μm particle size) using gradient elution with a mobile phase of ammonium formate buffer (pH 3.0, 20 mM), acetonitrile at a flow rate 1.0 mL min-1, and an ultraviolet detection wavelength of 226 nm. The new cetrorelix methylene dimer impurity was characterized by LC-MS/MS and it characteristic fragment ions were summarized. A simple, fast and accurate method was established for the determination of the molecular weight and structure of the new cetrorelix methylene dimer impurity. In this study, the results showed that the cetrorelix was highly unstable in formaldehyde conditions. In addition, it is proposed that the impact of formaldehyde in the environment on the quality of cetrorelix acetate for Injection should be evaluated during the production process.
Collapse
Affiliation(s)
- Mingliang Li
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Huapeng Li
- Analysis and Testing Center of Qilu Pharmaceutical, Jinan, 250100, PR China
| | - Heqing Huang
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Yanzhi Li
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Li Qin
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Xuan Xu
- Analysis and Testing Center of Qilu Pharmaceutical, Jinan, 250100, PR China
| | - Qiang Zheng
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Donghai Wang
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Minghui Zhang
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China.
| | - Qingmin Yang
- Shandong Provincial Key Laboratory of New Microparticles Drug Delivery Technology for Injection, Jinan, 250100, PR China.
| |
Collapse
|
2
|
Cucchiara V, Yang JC, Liu C, Adomat HH, Tomlinson Guns ES, Gleave ME, Gao AC, Evans CP. GnRH Antagonists Have Direct Inhibitory Effects On Castration-Resistant Prostate Cancer Via Intracrine Androgen and AR-V7 Expression. Mol Cancer Ther 2019; 18:1811-1821. [DOI: 10.1158/1535-7163.mct-18-1337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/28/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
|
3
|
Sakai M, Martinez-Arguelles DB, Patterson NH, Chaurand P, Papadopoulos V. In search of the molecular mechanisms mediating the inhibitory effect of the GnRH antagonist degarelix on human prostate cell growth. PLoS One 2015; 10:e0120670. [PMID: 25811175 PMCID: PMC4374753 DOI: 10.1371/journal.pone.0120670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
Degarelix is a gonadrotropin-releasing hormone (GnRH) receptor (GnRHR) antagonist used in patients with prostate cancer who need androgen deprivation therapy. GnRHRs have been found in extra-pituitary tissues, including prostate, which may be affected by the GnRH and GnRH analogues used in therapy. The direct effect of degarelix on human prostate cell growth was evaluated. Normal prostate myofibroblast WPMY-1 and epithelial WPE1-NA22 cells, benign prostatic hyperplasia (BPH)-1 cells, androgen-independent PC-3 and androgen-dependent LNCaP prostate cancer cells, as well as VCaP cells derived from a patient with castration-resistant prostate cancer were used. Discriminatory protein and lipid fingerprints of normal, hyperplastic, and cancer cells were generated by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The investigated cell lines express GNRHR1 and GNRHR2 and their endogenous ligands. Degarelix treatment reduced cell viability in all prostate cell lines tested, with the exception of the PC-3 cells; this can be attributed to increased apoptosis, as indicated by increased caspase 3/7, 8 and 9 levels. WPE1-NA22, BPH-1, LNCaP, and VCaP cell viability was not affected by treatment with the GnRH agonists leuprolide and goserelin. Using MALDI MS, we detected changes in m/z signals that were robust enough to create a complete discriminatory profile induced by degarelix. Transcriptomic analysis of BPH-1 cells provided a global map of genes affected by degarelix and indicated that the biological processes affected were related to cell growth, G-coupled receptors, the mitogen-activated protein kinase (MAPK) pathway, angiogenesis and cell adhesion. Taken together, these data demonstrate that (i) the GnRH antagonist degarelix exerts a direct effect on prostate cell growth through apoptosis; (ii) MALDI MS analysis provided a basis to fingerprint degarelix-treated prostate cells; and (iii) the clusters of genes affected by degarelix suggest that this compound, in addition to its known use in the treatment of prostate cancer, may be efficacious in BPH.
Collapse
Affiliation(s)
- Monica Sakai
- The Research Institute of the McGill University Health Center, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Daniel B. Martinez-Arguelles
- The Research Institute of the McGill University Health Center, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Pierre Chaurand
- Department of Chemistry, University of Montreal, Montréal, Québec, Canada
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Center, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Departments of Biochemistry, McGill University, Montréal, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
4
|
Shrinkage of experimental benign prostatic hyperplasia and reduction of prostatic cell volume by a gastrin-releasing peptide antagonist. Proc Natl Acad Sci U S A 2013; 110:2617-22. [PMID: 23359692 DOI: 10.1073/pnas.1222355110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gastrin releasing-peptide (GRP) is a potent growth factor in many malignancies. Benign prostatic hyperplasia (BPH) is a progressive age-related proliferation of glandular and stromal tissues; various growth factors and inflammatory processes are involved in its pathogenesis. We have demonstrated that potent antagonists of GRP inhibit growth of experimental human tumors including prostate cancer, but their effect on models of BPH has not been studied. Here, we evaluated the effects of GRP antagonist RC-3940-II on viability and cell volume of BPH-1 human prostate epithelial cells and WPMY-1 prostate stromal cells in vitro, and in testosterone-induced BPH in Wistar rats in vivo. RC-3940-II inhibited the proliferation of BPH-1 and WPMY-1 cells in a dose-dependent manner and reduced prostatic cell volume in vitro. Shrinkage of prostates was observed after 6 wk of treatment with RC-3940-II: a 15.9% decline with 25 μg/d; and a 18.4% reduction with 50 μg/d (P < 0.05 for all). Significant reduction in levels of proliferating cell nuclear antigen, NF-κβ/p50, cyclooxygenase-2, and androgen receptor was also seen. Analysis of transcript levels of genes related to growth, inflammatory processes, and signal transduction showed significant changes in the expression of more than 90 genes (P < 0.05). In conclusion, GRP antagonists reduce volume of human prostatic cells and lower prostate weight in experimental BPH through direct inhibitory effects on prostatic GRP receptors. GRP antagonists should be considered for further development as therapy for BPH.
Collapse
|