1
|
Liu F, Wang X, He Y, Han R, Wang T, Guo Y. Jaw osteoporosis: Challenges to oral health and emerging perspectives of treatment. Biomed Pharmacother 2024; 177:116995. [PMID: 38917761 DOI: 10.1016/j.biopha.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Osteoporosis is a prevalent bone metabolic disease that poses a significant challenge to global human health. Jaw osteoporosis, characterized by microstructural damage of the jaw resulting from various factors, is one of the common manifestations of this condition. Recent studies have demonstrated that jaw osteoporosis has multifaceted effects on oral health and can negatively impact conditions such as periodontitis, oral implantation, orthodontic treatment, and wound healing. However, there are still some limitations in the conventional treatment of osteoporosis. For instance, while bisphosphonates can enhance bone quality, they may also lead to osteonecrosis of the jaw, which poses a potential safety hazard in oral diagnosis and treatment. In recent years, considerable attention has been focused on improving the pathological condition of jaw osteoporosis. Treatment strategies such as gut microbial regulation, extracellular vesicles, molecular targeted therapy, herbal medicine, mechanical stimulation are expected to enhance efficacy and minimize adverse reactions. Therefore, understanding these effects and exploring novel treatments for jaw osteoporosis may provide new insights for oral health maintenance and disease treatment. This article reviews the impact of jaw osteoporosis on oral health and describes the limitations associated with current methods. It also discusses emerging perspectives on treatment, offering a comprehensive overview of the challenges and future directions in managing jaw osteoporosis.
Collapse
Affiliation(s)
- Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Tian S, Li YL, Wang J, Dong RC, Wei J, Ma Y, Liu YQ. Chinese Ecliptae herba (Eclipta prostrata (L.) L.) extract and its component wedelolactone enhances osteoblastogenesis of bone marrow mesenchymal stem cells via targeting METTL3-mediated m6A RNA methylation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116433. [PMID: 37004744 DOI: 10.1016/j.jep.2023.116433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese Ecliptae herba (Eclipta prostrata (L.) L.) is an ethnomedicinal herb, which is used mainly to nourish kidney and thus strengthen bones according to traditional Chinese medicine theory. Pharmacological studies have supported the ethnomedicine use, showing that Ecliptae herba extract has an anti-osteoporotic effect in vivo and promoted osteoblast proliferation and activity in vitro. However, the molecular mechanism of Ecliptae herba on osteoblast differentiation from bone marrow mesenchymal stem cells (BMSC), the progenitors of osteoblasts, is still unclear. AIM OF THE STUDY N6-methyladenosine (m6A) mRNA epigenetic modification may play a key role in promoting osteoblastic differentiation, and thus treating osteoporosis. This study sought to assess the mechanism through which Eclipate herba and its component wedelolactone influence m6A modification during the process of osteoblastogenesis from BMSC. MATERIAL AND METHODS The alkaline phosphatase (ALP) and Alizarin red S (ARS) staining were applied to determine osteoblastogenesis from BMSC. Western blot and quantitative real-time PCR were performed. RNA sequencing analysis was used to determine the characteristics of m6A methylation. Stable knocking down of METTL3 using lentiviral-based shRNA was performed. RESULTS Upon 9 d treatment of BMSC with ethyl acetate extract of Ecliptae herba (MHL), ALP activity and ossification level increased in comparison with osteogenic medium (OS)-treated control. The expression of methyltransferase METTL3 and METTL14 was significantly increased, but WTAP expression had no change in response to MHL treatment. Knocking down of METTL3 resulted in a decrease in MHL-induced ALP activity, ossification level as well as mRNA expression of Osterix and Osteocalcin, two bone formation-related markers. The level of m6A increased when BMSC was treated with MHL for 9 d. RNA sequencing analysis indicated that MHL treatment altered mRNA m6A modification of genes associated with osteoblastogenesis. By kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, HIF-1α, PI3K/Akt, and Hippo signaling pathways were enriched and associated with m6A modification. The expression of m6A-modified genes including HIF-1α, VEGF-A, and RASSF1, was upregulated by MHL, but the upregulation was reversed after METTL3 knockdown. Additionally, the enhanced expression of METTL3 was also observed after treatment with wedelolactone, a component from MHL. CONCLUSIONS These results suggested a previously uncharacterized mechanism of MHL and wedelolactone on osteoblastogenesis, by which METTL3-mediated m6A methylation is involved and thus contributes to the enhancement of osteoblastogenesis.
Collapse
Affiliation(s)
- Shuo Tian
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yi-Lin Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jie Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Ren-Chao Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jun Wei
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yan-Qiu Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Li Y, Li Z, Ye T, Hao F, Wang Y, Li W, Yan Q, Shi H, Han W. Mechanism of Erzhiwan in treating osteoporosis based on molecular docking technology and molecular dynamics simulation. J Mol Model 2022; 29:21. [PMID: 36565386 DOI: 10.1007/s00894-022-05418-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022]
Abstract
This experiment was a network pharmacology research based on the theoretical system of traditional Chinese medicine. TCMSP database, PubChem database, RCSB database, and SwissTargetPrediction database were used to study the effective chemical constituents of Ligustri lucidi Fructus and Ecliptae Herba in Erzhiwan, a traditional prescription for nourishing the liver and kidney. Then Genecards database, OMIM database, OMIM Gene Map, and Metascape database were used to study the therapeutic targets of osteoporosis. At last, Cytoscape 3.6.0 software, its built-in Bisogenet and CytoNCA, AutoDockTools-1.5.6 software, PYMOL-2.2.0 software, and Gromacs software, by drawing the relationship diagram between chemical components and disease targets, PPI network of disease, semi-flexible molecular docking technology, evaluation and analysis of enrichment pathway, and molecular dynamics simulation, were used to study the therapeutic mechanism of Erzhiwan on osteoporosis. It is found that the intervention and regulation of Erzhiwan on osteoporosis were mainly realized through multiple targets of active ingredients and multiple pathways, which provided support for the continued development of Erzhiwan.
Collapse
Affiliation(s)
- Yanling Li
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Ziliang Li
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China.,School of pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tongsheng Ye
- Department of Pharmacy, Henan Integrative Medicine Hospital, Zhengzhou, 450004, China
| | - Fuqi Hao
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yichi Wang
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenqian Li
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Qingfeng Yan
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Huawei Shi
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Weijuan Han
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
| |
Collapse
|
4
|
Combined Therapy of Yishen Zhuanggu Decoction and Caltrate D600 Alleviates Postmenopausal Osteoporosis by Targeting FoxO3a and Activating the Wnt/ β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7732508. [PMID: 35873637 PMCID: PMC9307327 DOI: 10.1155/2022/7732508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Background Postmenopausal osteoporosis (PMO) is the most prevalent metabolic bone disease in women. Yishen Zhuanggu (YSZG) decoction and Caltrate D600 reportedly affects bone formation. This study aimed to investigate the efficacy and mechanism of YSZG decoction combined with Caltrate D600 in PMO treatment. Methods Ovariectomy-induced PMO rat model was treated with YSZG or/and Caltrate D600 for 12 weeks. Femur bone mineral density (BMD), osteoporosis-related protein expression, and serum parameters were measured. Pathological features of femur bone tissues were observed using hematoxylin and eosin staining. Serum levels of oxidative stress parameters were measured using corresponding commercial kits. The mRNA and protein expression of FoxO3a, Wnt, and β-catenin was detected using qRT-PCR and western blotting. Results The BMD and ultimate load of PMO rats were increased after treatment with YSZG. YSZG treatment promoted the bone trabeculae formation of PMO rats. YSZG treatment also induced bone differentiation and suppress oxidative stress in PMO rats, evidenced by the increased BALP, Runx2, OPG, SOD, and CAT levels, as well as the decreased TRACP 5b, RANKL, ROS, and MDA levels. Additionally, YSZG treatment downregulated the FoxO3a expression and upregulated the levels of Wnt and β-catenin in PMO rats. Caltrate D600 addition showed an auxiliary effect for YSZG. Conclusion YSZG decoction exerts the antiosteoporotic effect on PMO by restraining the FoxO3a expression and activating the Wnt/β-catenin pathway, which has an impressive synergistic effect with Caltrate D600.
Collapse
|
5
|
Liu H, Guo Y, Zhu R, Wang L, Chen B, Tian Y, Li R, Ma R, Jia Q, Zhang H, Xia B, Li Y, Wang X, Zhu X, Zhang R, Brӧmme D, Gao S, Zhang D, Pei X. Fructus Ligustri Lucidi
preserves bone quality through induction of canonical Wnt/β‐catenin signaling pathway in ovariectomized rats. Phytother Res 2020; 35:424-441. [DOI: 10.1002/ptr.6817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/09/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Haixia Liu
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yubo Guo
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Ruyuan Zhu
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Lili Wang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Beibei Chen
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yimiao Tian
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Rui Li
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Rufeng Ma
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Qiangqiang Jia
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Hao Zhang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Bingke Xia
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Yu Li
- Department of Histology and Embryology, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
- Sino‐Canada Anti‐Fibrosis Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Xinxiang Wang
- Center for Experimental Medicine The Second Affiliated Hospital of Beijing University of Chinese Medicine Beijing China
| | - Xiaofeng Zhu
- Department of Chinese Medicine The First Affiliated Hospital of Jinan University Guangzhou China
| | - Ronghua Zhang
- Department of Chinese Medicine The First Affiliated Hospital of Jinan University Guangzhou China
| | - Dieter Brӧmme
- Faculty of Dentistry University of British Columbia Vancouver British Columbia Canada
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
- Sino‐Canada Anti‐Fibrosis Center, Traditional Chinese Medicine School Beijing University of Chinese Medicine Beijing China
| | - Xiaohua Pei
- The Fangshan Hospital of BUCM Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
6
|
Li X, Lu X, Fan D, Li L, Lu C, Tan Y, Xia Y, Zhao H, Fan M, Xiao C. Synergistic Effects of Erzhi Pill Combined With Methotrexate on Osteoblasts Mediated via the Wnt1/LRP5/ β-Catenin Signaling Pathway in Collagen-Induced Arthritis Rats. Front Pharmacol 2020; 11:228. [PMID: 32218732 PMCID: PMC7079734 DOI: 10.3389/fphar.2020.00228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by chronic synovitis, bone erosion, and bone loss. Erzhi Pill (EZP), a classic Chinese patent medicine, is often used to treat osteoporosis and shows a capacity for bone metabolism regulation. Methotrexate (MTX), an essential drug for RA treatment, has been reported to inhibit generalized bone loss in RA patients. However, the combined therapeutic effects and mechanism of EZP and MTX in RA have not been fully elucidated. The aim of this study was to investigate the synergistic effect of EZP and MTX on RA and to explore the underlying mechanism through network pharmacological prediction and experimental verification. Chemical compounds of EZP, human target proteins of EZP and MTX, and RA-related human genes were identified in the Encyclopedia of Traditional Chinese Medicine database, PubChem database, and NCBI database, respectively. The molecular network of EZP and MTX in RA was generated and analyzed with Ingenuity Pathway Analysis software according to the datasets. Then, MTX monotherapy, EZP monotherapy, and combined MTX and EZP therapy were administered to collagen-induced arthritis rats, followed by assessment of pathological score, bone damage, bone alkaline phosphatases (BALP), and tartrate-resistant acid phosphatase (TRACP), and of gene levels related to the Wnt1/LRP5/β-catenin pathway according to network pharmacological analysis. Finally, serum samples from MTX-, EZP- and MTX+EZP-treated rats were used to treat the rat osteoblast (OB)-like UMR-106 cell line to evaluate gene levels related to Wnt1/LRP5/β-catenin. Network pharmacological analysis showed that the Wnt/β-catenin signaling pathway was the top signaling pathway shared among MTX, EZP, and RA. The results from in vivo experiments indicated that EZP combined with MTX reduced arthritis severity, alleviated ankle bone damage, increased BALP and decreased TRACP serum levels, and regulated the mRNA expression of Wnt1, LRP5, β-catenin, Runx2, BALP, and BGP in the ankles. In vitro experiments showed that EZP combined with MTX could also improve the expression of genes related to the Wnt1/LRP5/β-catenin pathway. This study demonstrated that EZP in combination with MTX played a synergistic role in regulating OBs in RA, which was connected to the modulatory effect of EZP and MTX on the Wnt1/LRP5/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoya Li
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiangcheng Lu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya Xia
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miaoxuan Fan
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Cheng Xiao
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Lee JH, Han SS, Lee C, Kim YH, Battulga B. Microarchitectural changes in the mandibles of ovariectomized rats: a systematic review and meta-analysis. BMC Oral Health 2019; 19:128. [PMID: 31242880 PMCID: PMC6595683 DOI: 10.1186/s12903-019-0799-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
Background This study aimed to examine radiologic microarchitectural changes in the mandibles of ovariectomized (OVX) rats through a systematic review and meta-analysis and to identify factors of the OVX rat model that influence on the bone microstructure. Methods Eligible articles were identified by searching electronic databases, including Embase, Medline, Web of Science, and KoreaMed, for articles published from January 1966 to November 2017. Two reviewers independently performed study selection, data extraction, and quality assessment. The pooled standardized mean difference (SMD) with 95% confidence intervals was calculated using a random-effects model. Subgroup analysis and meta-regression were performed to explore the effect of potential sources on the outcomes. The reliability of the results was assessed by sensitivity analysis and publication bias. Results Of 1160 studies, 16 studies (120 OVX and 120 control rats) were included in the meta-analysis. Compared to the control group, the OVX rats’ trabecular bone volume fraction (SMD = − 2.41, P < 0.01, I2 = 81%), trabecular thickness (SMD = − 1.73, P < 0.01, I2 = 73%) and bone mineral density (SMD = − 0.95, P = 0.01, I2 = 71%) displayed the bone loss consistent with osteoporosis. The trabecular separation (SMD = 1.66, P < 0.01, I2 = 51%) has widen in the OVX mandibular bone in comparison to the control group. However, the trabecular number showed no indication to detect the osteoporosis (SMD = − 0.45, P = 0.38, I2 = 76%). The meta-regression indicated that longer post-OVX periods led to greater changes in bone mineral density (β = − 0.104, P = 0.017). However, the rats’ age at OVX was not linked to bone microstructure change. Conclusions Using meta-regression and sensitivity analysis techniques, heterogeneity across the micro CT studies of OVX-induced osteoporosis was found. The major factors of heterogeneity were the region of interest and post-OVX period. Our assessment can assist in designing experiments to maximize the usefulness of OVX rat model.
Collapse
Affiliation(s)
- Jeong-Hee Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Sang-Sun Han
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea.
| | - Chena Lee
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Young Hyun Kim
- Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea
| | - Bulgan Battulga
- School of Dentistry, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| |
Collapse
|
8
|
Ou L, Wei P, Li M, Gao F. Inhibitory effect of Astragalus polysaccharide on osteoporosis in ovariectomized rats by regulating FoxO3a /Wnt signaling pathway. Acta Cir Bras 2019; 34:e201900502. [PMID: 31166463 PMCID: PMC6583917 DOI: 10.1590/s0102-865020190050000002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: To investigate inhibitory effect of Astragalus polysaccharide (APS) on osteoporosis in ovariectomized rats by regulating FoxO3a/Wnt2 signaling pathway. Methods: Postmenopausal osteoporosis (PMOP) animal model was developed by excising the bilateral ovaries of rats. The model rats were administered with APS (200 mg/kg, 400 mg/kg, 800 mg/kg) by intragastric administration once daily for 12 weeks. Bone density, bone metabolism index and oxidative stress index were measured in all groups. Furthermore, the regulation of APS of FoxO3a / Wnt2 signaling pathway was observed. Results: APS has an estrogen-like effect, which can increase bone mass, lower serum ALP and BGP values, increase blood calcium content, and increase bone density of the femur and vertebrae in rats. At the same time, APS can increase the bone mineral content of the femur, increase the maximum stress, maximum load and elastic modulus of the ovariectomized rats, improve oxidative stress in rats by increasing the gene expression of β-catenin and Wnt2 mRNA and inhibiting the gene expression of FoxO3a mRNA. Conclusion: Astragalus polysaccharide can effectively alleviate oxidative stress-mediated osteoporosis in ovariectomized rats, which may be related to its regulation of FoxO3a/Wnt2/β-catenin pathway.
Collapse
Affiliation(s)
- Li Ou
- Department of Clinical Chinese Pharmacy, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Peifeng Wei
- Department of Clinical Chinese Pharmacy, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Li
- Department of Clinical Chinese Pharmacy, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Feng Gao
- Department of Clinical Chinese Pharmacy, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
9
|
Zhang X, Xu X, Liu X, Mao C, Qin A, Lu E. Bis‑enoxacin blocks alveolar bone resorption in rats with ovariectomy‑induced osteoporosis. Mol Med Rep 2017; 17:3232-3238. [PMID: 29257280 DOI: 10.3892/mmr.2017.8223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 04/07/2017] [Indexed: 11/05/2022] Open
Abstract
Postmenopausal osteoporosis is a common systemic skeletal disease that is associated with estrogen‑deficiency. Bone loss associated with bisphosphonates therapy can increase the risk of developing oral osteonecrosis. Recent studies have indicated that enoxacin may inhibit osteoclast formation and bone resorption via a different mechanism from that of bisphosphonates. Therefore, the authors hypothesized that the use of an enoxacin such as bis‑enoxacin (BE) in association with bisphosphonates may be effective in the treatment of postmenopausal osteoporosis‑associated alveolar bone resorption and reduce the risk of oral osteonecrosis by allowing the dose of bisphosphonates to be reduced. A total of 30 6‑month‑old female Sprague‑Dawley rats were randomly assigned to five groups: The Sham, Vehicle, zoledronic acid (ZOL), low concentrations of BE (BE‑L) and high concentrations of BE (BE‑H) groups. The results demonstrated that the ZOL, BE‑L and BE‑H groups had an increased bone volume/tissue volume, trabecular thickness, mineral apposition rate, mineralizing surface/bone surface and a decreased trabecular separation when compared with the Vehicle group. The microscopic evaluation of histological sections clearly supported the results of the micro‑computed tomography. The number of tartrate‑resistant acid phosphatase‑positive osteoclasts was markedly decreased in the ZOL, BE‑L and BE‑H groups, indicating that BE may inhibit osteoclast formation. The anti‑resorptive effect in the BE‑H group was close to or better than that exhibited by the ZOL group; however, this effect was poorer in the BE‑L group. In conclusion, BE has the potential to block alveolar bone resorption resulting from ovariectomy‑induced osteoporosis in rats in a dose‑dependent manner.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Xinchen Xu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi 330200, P.R. China
| | - Chuanyuan Mao
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - An Qin
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orthopedic Implants, Shanghai 200011, P.R. China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
10
|
New insights into the tonifying kidney-yin herbs and formulas for the treatment of osteoporosis. Arch Osteoporos 2017; 12:14. [PMID: 28127706 DOI: 10.1007/s11657-016-0301-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/11/2016] [Indexed: 02/03/2023]
Abstract
Osteoporosis is characterized by an increasing osseous fragility and fracture resulting from the low mass and deteriorated microarchitecture in the bone tissue. The hormone replacement therapy and alendronate were frequently used to treat osteoporosis as the primary therapeutic strategy, but their adverse effects have severely limited their extensive clinical application, therefore, it is urgent to develop alternative or complementary therapeutic agents for anti-osteoporosis. Interestingly, with more people focusing on the complementary and alternative medicine, traditional Chinese herbs and formulas are being gradually recognized as safe and effective agents in the treatment of osteoporosis. In particular, a notable trend is that increasing studies are making efforts to clarify the anti-osteoporotic effects and mechanism of the tonifying kidney-yin herbs and formulas, a category of agents identified as effective therapy. Therefore, the purpose of this study is to comprehensively review the tonifying kidney-yin herbs and formulas that have been reported in the treatment of osteoporosis as well as how the agents play their roles in detail. This current study not only will advance our understanding of the actions of tonifying kidney-yin herbs and formulas, but also provide new evidence for the clinic use of the tonifying kidney-yin herbs and formulas in the treatment of osteoporosis.
Collapse
|
11
|
Chen B, Wang L, Li L, Zhu R, Liu H, Liu C, Ma R, Jia Q, Zhao D, Niu J, Fu M, Gao S, Zhang D. Fructus Ligustri Lucidi in Osteoporosis: A Review of its Pharmacology, Phytochemistry, Pharmacokinetics and Safety. Molecules 2017; 22:molecules22091469. [PMID: 28872612 PMCID: PMC6151717 DOI: 10.3390/molecules22091469] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Fructus Ligustri Lucidi (FLL) has now attracted increasing attention as an alternative medicine in the prevention and treatment of osteoporosis. This study aimed to provide a general review of traditional interpretation of the actions of FLL in osteoporosis, main phytochemical constituents, pharmacokinetics, pharmacology in bone improving effect, and safety. Materials and Methods: Several databases, including PubMed, China National Knowledge Infrastructure, National Science and Technology Library, China Science and Technology Journal Database, and Web of Science were consulted to locate publications pertaining to FLL. The initial inquiry was conducted for the presence of the following keywords combinations in the abstracts: Fructus Ligustri Lucidi, osteoporosis, phytochemistry, pharmacokinetics, pharmacology, osteoblasts, osteoclasts, salidroside. About 150 research papers and reviews were consulted. Results: FLL is assumed to exhibit anti-osteoporotic effects by improving liver and kidney deficiencies and reducing lower back soreness in Traditional Chinese Medicine (TCM). The data from animal and cell experiments demonstrate that FLL is able to improve bone metabolism and bone quality in ovariectomized, growing, aged and diabetic rats through the regulation of PTH/FGF-23/1,25-(OH)2D3/CaSR, Nox4/ROS/NF-κB, and OPG/RANKL/cathepsin K signaling pathways. More than 100 individual compounds have been isolated from this plant. Oleanolic acid, ursolic acid, salidroside, and nuzhenide have been reported to exhibit the anti-osteoporosis effect. The pharmacokinetics data reveals that salidroside is one of the active constituents, and that tyrosol is hard to detect under physiological conditions. Acute and subacute toxicity studies show that FLL is well tolerated and presents no safety concerns. Conclusions: FLL provides a new option for the prevention and treatment of osteoporosis, which attracts rising interests in identifying potential anti-osteoporotic compounds and fractions from this plant. Further scientific evidences are expected from well-designed clinical trials on its bone protective effects and safety.
Collapse
Affiliation(s)
- Beibei Chen
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lili Wang
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100029, China.
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lin Li
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ruyuan Zhu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Haixia Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chenyue Liu
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Rufeng Ma
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Qiangqiang Jia
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Dandan Zhao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jianzhao Niu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Min Fu
- The Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada.
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
12
|
Huang W, Zheng X, Yang X, Fan S. Stimulation of Osteogenic Differentiation by Saikosaponin-A in Bone Marrow Stromal Cells Via WNT/β-Catenin Pathway. Calcif Tissue Int 2017; 100:392-401. [PMID: 28185033 DOI: 10.1007/s00223-017-0242-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/19/2017] [Indexed: 11/30/2022]
Abstract
Saikosaponin-A (SA), a class of native compound with numerous biological activities, may exert protective effect against postmenopausal bone loss. However, it remains unknown whether SA regulates the osteogenic differentiation of bone marrow stromal cells (BMSCs) in the treatment and prevention of osteoporosis. In this study, BMSCs were treated with various concentrations of SA to stimulate osteogenic differentiation over a 14-day period. Additionally, a canonical ovariectomized (OVX) mouse model was used to evaluate the effect of 3-month SA treatment in preventing postmenopausal osteoporosis. In vitro, we found that SA promotes alkaline phosphatase activity/staining and Alizarin red assay, stimulated the expression of osteogenic markers, i.e., runt-related transcription factor 2 (Runx2), osterix, osteopontin, and osteocalcin (OCN) in BMSCs. In vivo, the trabecular number, trabecular thickness, and trabecular bone mineral density of the distal femoral metaphysis were significantly increased in OVX mice treated intraperitoneally with SA for 3 months compared with OVX mice that not treated with SA. Moreover, the expression of Runx2 and OCN in OVX + SA mice was significantly increased than that in OVX mice. Finally, we found that SA activated the WNT/β-catenin pathway and the expression of several downstream genes including T-cell factor-1 and lymphoid enhancer factor-1. Inhibition of WNT/β-catenin pathway by Dickkopf-related protein 1 blocked the positive role of SA on osteogenesis. Therefore, SA promoted the osteogenic differentiation of BMSCs through WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Weiqi Huang
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, People's Republic of China
| | - Xiaoling Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Panyu District, Guangzhou, 511400, People's Republic of China
| | - Xiaodong Yang
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, People's Republic of China
| | - Shicai Fan
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
13
|
Zhang ND, Han T, Huang BK, Rahman K, Jiang YP, Xu HT, Qin LP, Xin HL, Zhang QY, Li YM. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:61-80. [PMID: 27180315 DOI: 10.1016/j.jep.2016.05.025] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoporosis is a chronic epidemic which can leads to enhanced bone fragility and consequent an increase in fracture risk. Traditional Chinese medicine (TCM) formulas have a long history of use in the prevention and treatment of osteoporosis. Antiosteoporotic TCM formulas have conspicuous advantage over single drugs. Systematic data mining of the existing antiosteoporotic TCM formulas database can certainly help the drug discovery processes and help the identification of safe candidates with synergistic formulations. In this review, the authors summarize the clinical use and animal experiments of TCM formulas and their mechanism of action, and discuss the potential antiosteoporotic activity and the active constituents of commonly used herbs in TCM formulas for the therapy of osteoporosis. MATERIALS AND METHODS The literature was searched from Medline, Pubmed, ScienceDirect, Spring Link, Web of Science, CNKI and VIP database from 1989 to 2015, and also collected from Chinese traditional books and Chinese Pharmacopoeia with key words such as osteoporosis, osteoblast, osteoclast, traditional Chinese medicine formulas to identify studies on the antiosteoporotic effects of TCM formulas, herbs and chemical constituents, and also their possible mechanisms. RESULTS Thirty-three TCM formulas were commonly used to treat osteoporosis, and showed significant antiosteoporotic effects in human and animal. The herb medicines and their chemical constituents in TCM formulas were summarized, the pharmacological effects and chemical constituents of commonly used herbs in TCM formulas were described in detail. The action mechanisms of TCM formulas and their chemical constituents were described. Finally, the implication for the discovery of antiosteoporotic leads and combinatory ingredients from TCM formulas were prospectively discussed. CONCLUSIONS Clinical practice and animal experiments indicate that TCM formulas provide a definite therapeutic effect on osteoporosis. The active constituents in TCM formulas are diverse in chemical structure, and include flavonoids, lignans, saponins and iridoid glycosides. Antiosteoporotic mechanism of TCM formulas and herbs involves multi regulatory pathways, such as Wnt/β-catenin, BMP/Smad, MAPK pathway and RANKL/OPG system. Phytochemicals from TCM formulas and their compositional herb medicines offer great potential for the development of novel antiosteoporotic drugs. The active ingredients in TCM formulas can be developed in combination as potent drugs, which may exhibit better antiosteoporotic effects compared to the individual compound.
Collapse
Affiliation(s)
- Nai-Dan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Bao-Kang Huang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, LiverpoolL3 3AF, UK
| | - Yi-Ping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hong-Tao Xu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hai-Liang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yi-Min Li
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Soares CD, Carvalho MGFD, Carvalho RAD, Trindade SRP, Rêgo ACMD, Araújo-Filho I, Marques MM. Chenopodium ambrosioides L. extract prevents bone loss. Acta Cir Bras 2015; 30:812-8. [DOI: 10.1590/s0102-865020150120000004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022] Open
|