1
|
Sahakian L, Robinson AM, Sahakian L, Stavely R, Kelley MR, Nurgali K. APE1/Ref-1 as a Therapeutic Target for Inflammatory Bowel Disease. Biomolecules 2023; 13:1569. [PMID: 38002251 PMCID: PMC10669584 DOI: 10.3390/biom13111569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation of the gastrointestinal tract. The prevalence of IBD is increasing with approximately 4.9 million cases reported worldwide. Current therapies are limited due to the severity of side effects and long-term toxicity, therefore, the development of novel IBD treatments is necessitated. Recent findings support apurinic/apyrimidinic endonuclease 1/reduction-oxidation factor 1 (APE1/Ref-1) as a target in many pathological conditions, including inflammatory diseases, where APE1/Ref-1 regulation of crucial transcription factors impacts significant pathways. Thus, a potential target for a novel IBD therapy is the redox activity of the multifunctional protein APE1/Ref-1. This review elaborates on the status of conventional IBD treatments, the role of an APE1/Ref-1 in intestinal inflammation, and the potential of a small molecule inhibitor of APE1/Ref-1 redox activity to modulate inflammation, oxidative stress response, and enteric neuronal damage in IBD.
Collapse
Affiliation(s)
- Lauren Sahakian
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (L.S.); (A.M.R.)
| | - Ainsley M. Robinson
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (L.S.); (A.M.R.)
| | - Linda Sahakian
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.S.); (R.S.)
| | - Rhian Stavely
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.S.); (R.S.)
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mark R. Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kulmira Nurgali
- Institute for Health & Sport, Victoria University, Melbourne, VIC 3021, Australia; (L.S.); (A.M.R.)
- Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.S.); (R.S.)
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
2
|
Ghazi N, Khorasanchi M. Markers associated with malignant transformation of oral lichen planus: A review article. Arch Oral Biol 2021; 127:105158. [PMID: 34022545 DOI: 10.1016/j.archoralbio.2021.105158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Oral lichen planus (OLP) is one of the autoimmune diseases associated with chronic inflammation that involves several complications including the potential for malignant transformation into oral squamous cell carcinoma. Pathogenesis of OLP are yet to be fully comprehended however, it has been demonstrated that the epithelial cells in OLP lesions are affected by cytotoxic T lymphocytes leading to immunological reactions. Various factors are reported to act as diagnostic markers for predicting and monitoring the cancerous progression. Hence, in this review, we summarize and present the latest studies regarding the predictive markers associated with malignant potential of OLP.
Collapse
Affiliation(s)
- Narges Ghazi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Khorasanchi
- Student Research Committee, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Effect of irradiation on the expression of E-cadherin and β-catenin in early and late radiation sequelae of the urinary bladder and its modulation by NF-κB inhibitor thalidomide. Strahlenther Onkol 2021; 197:537-546. [PMID: 33688971 PMCID: PMC8154806 DOI: 10.1007/s00066-021-01751-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Purpose In a previous study we have shown in a mouse model that administration of nuclear factor-kappa B (NF-κB) inhibitor thalidomide has promising therapeutic effects on early radiation cystitis (ERC) and late radiation sequelae (LRS) of the urinary bladder. The aim of this study was to evaluate in the same mice the effect of thalidomide on adherens junction (AJ) proteins in ERC and LRS. Methods Urothelial expressions of E‑cadherin and β‑catenin were assessed by immunohistochemistry in formalin-fixed paraffin-embedded (FFPE) bladder specimens over 360 days post single-dose irradiation on day 0. First, the effect of irradiation on AJ expression and then effects of thalidomide on irradiation-induced AJ alterations were assessed using three different treatment times. Results Irradiation provoked a biphasic upregulation of E‑cadherin and β‑catenin in the early phase. After a mild decrease of E‑cadherin and a pronounced decrease of β‑catenin at the end of the early phase, both increased again in the late phase. Early administration of thalidomide (day 1–15) resulted in a steeper rise in the first days, an extended and increased expression at the end of the early phase and a higher expression of β‑catenin alone at the beginning of the late phase. Conclusion Upregulation of AJ proteins is an attempt to compensate irradiation-induced impairment of urothelial barrier function. Early administration of thalidomide improves these compensatory mechanisms by inhibiting NF-κB signaling and its interfering effects.
Collapse
|
4
|
Wheat gluten intake increases the severity of experimental colitis and bacterial translocation by weakening of the proteins of the junctional complex. Br J Nutr 2019; 121:361-373. [PMID: 30554574 DOI: 10.1017/s0007114518003422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gluten is only partially digested by intestinal enzymes and can generate peptides that can alter intestinal permeability, facilitating bacterial translocation, thus affecting the immune system. Few studies addressed the role of diet with gluten in the development of colitis. Therefore, we investigate the effects of wheat gluten-containing diet on the evolution of sodium dextran sulphate (DSS)-induced colitis. Mice were fed a standard diet without (colitis group) or with 4·5 % wheat gluten (colitis + gluten) for 15 d and received DSS solution (1·5 %, w/v) instead of water during the last 7 d. Compared with the colitis group, colitis + gluten mice presented a worse clinical score, a larger extension of colonic injury area, and increased mucosal inflammation. Both intestinal permeability and bacterial translocation were increased, propitiating bacteria migration for peripheral organs. The mechanism by which diet with gluten exacerbates colitis appears to be related to changes in protein production and organisation in adhesion junctions and desmosomes. The protein α-E-catenin was especially reduced in mice fed gluten, which compromised the localisation of E-cadherin and β-catenin proteins, weakening the structure of desmosomes. The epithelial damage caused by gluten included shortening of microvilli, a high number of digestive vacuoles, and changes in the endosome/lysosome system. In conclusion, our results show that wheat gluten-containing diet exacerbates the mucosal damage caused by colitis, reducing intestinal barrier function and increasing bacterial translocation. These effects are related to the induction of weakness and disorganisation of adhesion junctions and desmosomes as well as shortening of microvilli and modification of the endocytic vesicle route.
Collapse
|
5
|
Huang L, Yang Y, Yang F, Liu S, Zhu Z, Lei Z, Guo J. Functions of EpCAM in physiological processes and diseases (Review). Int J Mol Med 2018; 42:1771-1785. [PMID: 30015855 PMCID: PMC6108866 DOI: 10.3892/ijmm.2018.3764] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
EpCAM (epithelial cell adhesion molecule) is a type I transmembrane glycoprotein, which was originally identified as a tumor-associated antigen due to its high expression level in rapidly growing epithelial tumors. Germ line mutations of the human EpCAM gene have been indicated as the cause of congenital tufting enteropathy. Previous studies based on cell models have revealed that EpCAM contributes to various biological processes including cell adhesion, signaling, migration and proliferation. Due to the previous lack of genetic animal models, the in vivo functions of EpCAM remain largely unknown. However, EpCAM genetic animal models have recently been generated, and are useful for understanding the functions of EpCAM. The authors here briefly review the functions and mechanisms of EpCAM in physiological processes and different diseases.
Collapse
Affiliation(s)
- Li Huang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Fei Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Shaomin Liu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Ziqin Zhu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
6
|
Zargaran M, Baghaei F, Moghimbeigi A. Comparative study of β-catenin and CD44 immunoexpression in oral lichen planus and squamous cell carcinoma. Int J Dermatol 2018; 57:794-798. [DOI: 10.1111/ijd.14007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Massoumeh Zargaran
- Dental Research Center; Department of Oral & Maxillofacial Pathology; School of Dentistry; Hamadan University of Medical Sciences; Hamadan Iran
| | - Fahimeh Baghaei
- Department of Oral & Maxillofacial Pathology; School of Dentistry; Hamadan University of Medical Sciences; Hamadan Iran
| | - Abbas Moghimbeigi
- Modeling of Noncommunicable Diseases Research Center; Department of Biostatistics; School of Public Health; Hamadan University of Medical Sciences; Hamadan Iran
| |
Collapse
|
7
|
NF-kappa B activation correlates with disease phenotype in Crohn's disease. PLoS One 2017; 12:e0182071. [PMID: 28753650 PMCID: PMC5533307 DOI: 10.1371/journal.pone.0182071] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
Background/Aims Unregulated activation of nuclear factor-κB (NF-κB) plays a critical role in the pathogenesis of Crohn’s disease. In this study, we investigated the clinical characteristics and disease outcome of Crohn’s disease patients with varying levels of the NF-κB activation. Methods Crohn’s disease patients who underwent surgical bowel resection were divided into two groups, based on the activation status of NF-κB. NF-κB activation was assessed by the immunoreactivity of nuclear NF-κB during immunohistochemical staining of bowel resection specimens. We compared the demographic, clinical and histologic characteristics between groups. Furthermore, the occurrence of reoperation, readmission, and medication change due to disease flare-up were investigated according to NF-κB activation status. Results Among 83 Crohn’s disease patients, 47 (56%) showed high NF-κB activity and 36 (44%) showed low NF-κB activity. Patients with high NF-κB activity had higher frequency of ileocolonic involvement (P = 0.028) and lower frequency of perianal involvement (P = 0.042) relative to those with low NF-κB activity. Total histologic scores were significantly higher in patients with high NF-κB activity than those with low NF-κB activity (P = 0.044). There was no significant difference in the frequency of reoperation, readmission, and medication change in relation to NF-κB activation status. Conclusions Crohn’s disease patients with high NF-κB activation showed specific clinical manifestations of higher frequency of ileocolonic involvement and lower frequency of perianal involvement relative to those with low NF-κB activation. High NF-κB activity was associated with higher histologic scores. However, the NF-κB activity did not affect the outcome and disease course after surgery.
Collapse
|
8
|
Liu L, Zhang C, Li X, Sun W, Qin S, Qin L, Wang X. miR-223 promotes colon cancer by directly targeting p120 catenin. Oncotarget 2017; 8:63764-63779. [PMID: 28969027 PMCID: PMC5609959 DOI: 10.18632/oncotarget.19541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
microRNA (miRNA) dysregulation is frequently observed in colon cancer. Previous studies found that miR-223 is upregulated in colon cancer and functions as an oncogene. Conversely, p120 is often downregulated or even absent in colon cancer, and is a likely tumor suppressor. The present study showed that increased miR-223 and decreased p120 levels are associated with colon cancer malignancy, and p120 expression is negatively correlated with miR-223 expression. A dual luciferase reporter assay showed that miR-223 directly targets p120. miR-223 upregulation in a colon cancer cell line upregulated c-Myc, cyclinD1, MMP7, and vimentin expression, downregulated E-cadherin, increased nuclear expression of β-catenin, and enhanced RhoA activation. We suggest miR-223 may promote colon cancer cell invasion and metastasis by downregulating p120, thereby reducing intercellular adhesion, promoting RhoA activity, and activating β-catenin signaling. Thus miR-223 functions as an oncogene in colon cancer and may be a potential diagnostic and therapeutic target for anti-colon cancer treatment.
Collapse
Affiliation(s)
- Liwei Liu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiyu Li
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenjia Sun
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenghui Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingzhi Qin
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Lechuga S, Ivanov AI. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1183-1194. [PMID: 28322932 DOI: 10.1016/j.bbamcr.2017.03.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|