1
|
Zhao M, Liu A, Mo L, Wan G, Lu F, Chen L, Fu S, Chen H, Fu T, Deng H. Higher expression of PLEK and LY86 as the potential biomarker of carotid atherosclerosis. Medicine (Baltimore) 2023; 102:e34445. [PMID: 37861500 PMCID: PMC10589592 DOI: 10.1097/md.0000000000034445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/30/2023] [Indexed: 10/21/2023] Open
Abstract
Carotid atherosclerosis (AS) occurs in atherosclerotic lesions of the carotid artery, which can lead to transient ischemic attack and stroke in severe cases. However, the relationship between pleckstrin (PLEK) and lymphocyte antigen 86 (LY86) and carotid AS remains unclear. The carotid AS datasets GSE43292 and GSE125771 were downloaded from the gene expression omnibus database. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. Construction and analysis of protein-protein interaction network. Functional enrichment analysis, gene set enrichment analysis and comparative toxicogenomics database analysis were performed. TargetScan screened miRNAs that regulated central DEGs. A total of 305 DEGs were identified. According to gene ontology analysis, they were mainly enriched in immune system processes, extracellular regions and cytokine binding. Kyoto encyclopedia of genes and genomes analysis showed that the target cells were mainly enriched in Rap1 signal pathway, B cell receptor signal pathway and PPAR signal pathway. In the enrichment project of metascape, the reaction to bacteria, cell activation and chemotaxis can be seen in the enrichment project of gene ontology. Total 10 core genes (TYROBP, FCER1G, PLEK, LY86, IL10RA, ITGB2, LCP2, FCGR2B, CD86, CCR1) were obtained by protein-protein interaction network construction and analysis. Core genes (PLEK, LY86, IL10RA, ITGB2, and LCP2) were highly expressed in carotid AS samples and lowly expressed in normal samples. Comparative toxicogenomics database analysis showed that 5 genes were associated with pneumonia, inflammation, necrosis, and drug allergy. PLEK and LY86 genes are highly expressed in carotid AS. The higher the expression of PLEK and LY86, the worse the prognosis is.
Collapse
Affiliation(s)
- Man Zhao
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Aixian Liu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Linhong Mo
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Guiling Wan
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Fang Lu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, China
| | - Lei Chen
- Department of Vascular Surgery, Fuxing Hospital Affiliated to Capital Medical University, Xicheng District, Beijing, China
| | - Siwei Fu
- Department of Cardiovascular Medicine, Jilin Provincial People's Hospital, Chaoyang District, Changchun City, Jilin Province, China
| | - Hongrun Chen
- Department of Urology, China Aerospace Science & Industry Corporation 731 Hospital, Feng Tai District, Beijing, China
| | - Taozhu Fu
- Department of Urology, China Aerospace Science & Industry Corporation 731 Hospital, Feng Tai District, Beijing, China
| | - Hongru Deng
- Department of Vascular Surgery, Fuxing Hospital Affiliated to Capital Medical University, Xicheng District, Beijing, China
| |
Collapse
|
2
|
Edwards K, Lydyard PM, Kulikova N, Tsertsvadze T, Volpi EV, Chiorazzi N, Porakishvili N. The role of CD180 in hematological malignancies and inflammatory disorders. Mol Med 2023; 29:97. [PMID: 37460961 PMCID: PMC10353253 DOI: 10.1186/s10020-023-00682-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Toll-like receptors play a significant role in the innate immune system and are also involved in the pathophysiology of many different diseases. Over the past 35 years, there have been a growing number of publications exploring the role of the orphan toll-like receptor, CD180. We therefore set out to provide a narrative review of the current evidence surrounding CD180 in both health and disease. We first explore the evidence surrounding the role of CD180 in physiology including its expression, function and signaling in antigen presenting cells (APCs) (dendritic cells, monocytes, and B cells). We particularly focus on the role of CD180 as a modulator of other TLRs including TLR2, TLR4, and TLR9. We then discuss the role of CD180 in inflammatory and autoimmune diseases, as well as in hematological malignancies of B cell origin, including chronic lymphocytic leukemia (CLL). Based on this evidence we produce a current model for CD180 in disease and explore the potential role for CD180 as both a prognostic biomarker and therapeutic target. Throughout, we highlight specific areas of research which should be addressed to further the understanding of CD180 biology and the translational potential of research into CD180 in various diseases.
Collapse
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, University of Westminster, London, UK
| | - Peter M Lydyard
- School of Life Sciences, University of Westminster, London, UK.
- The University of Georgia, Tbilisi, Georgia.
- Division of Infection of Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Nino Kulikova
- Agricultural University of Georgia, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
3
|
Li C, Wang J, Zhao M, Zhang S, Zhang Y. Toll‐like receptor 4 antagonist FP7 alleviates lipopolysaccharide‐induced septic shock via NF‐kB signaling pathway. Chem Biol Drug Des 2021; 97:1151-1157. [PMID: 33638265 DOI: 10.1111/cbdd.13837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Chao Li
- Department of Emergency Xingtai People’s Hospital of Hebei Province Xingtai China
| | - Junhui Wang
- Department of Emergency Xingtai People’s Hospital of Hebei Province Xingtai China
| | - Mailiang Zhao
- Department of Emergency Xingtai People’s Hospital of Hebei Province Xingtai China
| | - Sheng Zhang
- Department of Emergency Xingtai People’s Hospital of Hebei Province Xingtai China
| | - Yanwei Zhang
- Department of Emergency Xingtai People’s Hospital of Hebei Province Xingtai China
| |
Collapse
|
5
|
Zhang YJ, Huang H, Liu Y, Kong B, Wang G. MD-1 Deficiency Accelerates Myocardial Inflammation and Apoptosis in Doxorubicin-Induced Cardiotoxicity by Activating the TLR4/MAPKs/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2019; 25:7898-7907. [PMID: 31636246 PMCID: PMC6820359 DOI: 10.12659/msm.919861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Myocardial apoptosis and inflammation play important roles in doxorubicin (DOX)-caused cardiotoxicity. Our prior studies have characterized the effects of myeloid differentiation protein 1(MD-1) in pathological cardiac remodeling and myocardial ischemia/reperfusion (I/R) injury, but its participations and potential molecular mechanisms in DOX-caused cardiotoxicity remain unknown. MATERIAL AND METHODS In the present study, MD-1 knockout mice were generated, and a single intraperitoneal injection of DOX (15 mg/kg) was performed to elicit DOX-induced cardiotoxicity. Cardiac function, histological change, mitochondrial structure, myocardial death, apoptosis, inflammation, and molecular alterations were measured systemically. RESULTS The results showed that the protein and mRNA levels of MD-1 were dramatically downregulated in DOX-treated cardiomyocytes. DOX insult markedly accelerated cardiac dysfunction and injury, followed by enhancements of apoptosis and inflammation, all of which were further aggravated in MD-1 knockout mice. Mechanistically, the TLR4/MAPKs/NF-kappaB pathways, which were over-activated in MD-1-deficient mice, were significantly increased in DOX-damaged cardiomyocytes. Moreover, the abolishment of TLR4 or NF-kappaB via a specific inhibitor exerted protective effects against the adverse effects of MD-1 loss on DOX-caused cardiotoxicity. CONCLUSIONS Collectively, these findings suggest that MD-1 is a novel target for the treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ying-Jun Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Guangji Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| |
Collapse
|