1
|
Sun Y, Geng Y, Ma L. Determination of o-quinones in foods by a derivative strategy combined with UHPLC-MS/MS. Food Chem 2024; 453:139638. [PMID: 38781898 DOI: 10.1016/j.foodchem.2024.139638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
As primary polyphenol oxidant products, the occurrence of o-quinone is greatly responsible for quality deterioration in wine, including browning and aroma loss. The high reactivity of o-quinone causes huge difficulty in its determination. Herein, a derivative strategy combined with UHPLC-MS/MS analysis was established with chlorogenic acid quinone (CQAQ) and 4-methylcatechol quinone (4MCQ) as model compounds. Method validation demonstrated its efficiency for two analytes (R2 > 0.99, accuracy 98.71-106.39 %, RSD of precision 0.46-6.11 %, recovery 85.83-99.37 %). This approach was successfully applied to detect CQAQ and 4MCQ, suggesting its applicability in food analysis. CQAQ in coffee was much more than 4MCQ and with the deepening of baking degree, CQAQ decreased and 4MCQ increased. The amounts of CQAQ in various vegetables were markedly different, seemingly consistent with their respective browning degrees in practical production. This study developed an accurate and robust analytical approach for o-quinones, providing technical support for their further investigation in foods.
Collapse
Affiliation(s)
- Yue Sun
- College of Enology and Horticulture, Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 10083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 10083, China.
| |
Collapse
|
2
|
Alshammari F, Alam MB, Naznin M, Kim S, Lee SH. Optimization, Metabolomic Analysis, Antioxidant Potential andDepigmenting Activity of Polyphenolic Compounds fromUnmature Ajwa Date Seeds ( Phoenix dactylifera L.) Using Ultrasonic-Assisted Extraction. Antioxidants (Basel) 2024; 13:238. [PMID: 38397836 PMCID: PMC10886343 DOI: 10.3390/antiox13020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
This study sought to optimize the ultrasonic-assisted extraction of polyphenolic compounds from unmature Ajwa date seeds (UMS), conduct untargeted metabolite identification and assess antioxidant and depigmenting activities. Response surface methodology (RSM) utilizing the Box-Behnken design (BBD) and artificial neural network (ANN) modeling was applied to optimize extraction conditions, including the ethanol concentration, extraction temperature and time. The determined optimal conditions comprised the ethanol concentration (62.00%), extraction time (29.00 min), and extraction temperature (50 °C). Under these conditions, UMS exhibited total phenolic content (TPC) and total flavonoid content (TFC) values of 77.52 ± 1.55 mgGAE/g and 58.85 ± 1.12 mgCE/g, respectively, with low relative standard deviation (RSD%) and relative standard error (RSE%). High-resolution mass spectrometry analysis unveiled the presence of 104 secondary metabolites in UMS, encompassing phenols, flavonoids, sesquiterpenoids, lignans and fatty acids. Furthermore, UMS demonstrated robust antioxidant activities in various cell-free antioxidant assays, implicating engagement in both hydrogen atom transfer and single electron transfer mechanisms. Additionally, UMS effectively mitigated tert-butyl hydroperoxide (t-BHP)-induced cellular reactive oxygen species (ROS) generation in a concentration-dependent manner. Crucially, UMS showcased the ability to activate mitogen-activated protein kinases (MAPKs) and suppress key proteins including tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and -2) and microphthalmia-associated transcription factor (MITF), which associated melanin production in MNT-1 cell. In summary, this study not only optimized the extraction process for polyphenolic compounds from UMS but also elucidated its diverse secondary metabolite profile. The observed antioxidant and depigmenting activities underscore the promising applications of UMS in skincare formulations and pharmaceutical developments.
Collapse
Affiliation(s)
- Fanar Alshammari
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (S.K.)
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (S.K.)
- Mass Spectroscopy Converging Research and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (F.A.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Li Z, Lu F, Liu Y. A Review of the Mechanism, Properties, and Applications of Hydrogels Prepared by Enzymatic Cross-linking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390351 DOI: 10.1021/acs.jafc.3c01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Hydrogels, as biological materials, are widely used in food, tissue engineering, and biomedical applications. Nevertheless, many issues remain in the preparation of hydrogels by physical and chemical methods, such as low bioaffinity, weak mechanical properties, and unstable structures, which also limit their applications in other fields. However, the enzymatic cross-linking method has the advantages of high catalytic efficiency, mild reaction conditions, and the presence of nontoxic substances. In this review, we evaluated the chemical, physical, and biological methods of preparing hydrogels and introduced three common cross-linking enzymes and their principles for preparing hydrogels. This review introduced the applications and properties of hydrogels prepared by the enzymatic method and also provided some suggestions regarding the current situation and future development of hydrogels prepared by enzymatic cross-linking.
Collapse
Affiliation(s)
- Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
4
|
Alam MB, Park NH, Song BR, Lee SH. Antioxidant Potential-Rich Betel Leaves ( Piper betle L.) Exert Depigmenting Action by Triggering Autophagy and Downregulating MITF/Tyrosinase In Vitro and In Vivo. Antioxidants (Basel) 2023; 12:antiox12020374. [PMID: 36829933 PMCID: PMC9952209 DOI: 10.3390/antiox12020374] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
Each individual has a unique skin tone based on the types and quantities of melanin pigment, and oxidative stress is a key element in melanogenesis regulation. This research sought to understand the in vitro and in vivo antioxidant and depigmenting properties of betel leaves (Piper betle L.) extract (PBL) and the underlying mechanism. Ethyl acetate fractions of PBL (PBLA) demonstrated excellent phenolic content (342 ± 4.02 mgGAE/g) and strong DPPH, ABTS radicals, and nitric oxide (NO) scavenging activity with an IC50 value of 41.52 ± 1.02 μg/mL, 45.60 ± 0.56 μg/mL, and 51.42 ± 1.25 μg/mL, respectively. Contrarily, ethanolic extract of PBL (PBLE) showed potent mushroom, mice, and human tyrosinase inhibition activity (IC50 = 7.72 ± 0.98 μg/mL, 20.59 ± 0.83 μg/mL and 24.78 ± 0.56 μg/mL, respectively). According to gas chromatography-mass spectrometry, PBL is abundant in caryophyllene, eugenol, O-eugenol, 3-Allyl-6-methoxyphenyl acetate, and chavicol. An in vitro and in vivo investigation showed that PBLE suppressed tyrosinase (Tyr), tyrosinase-related protein-1 and -2 (Trp-1 and Trp-2), and microphthalmia-associated transcription factors (MITF), decreasing the formation of melanin in contrast to the untreated control. PBLE reduced the cyclic adenosine monophosphate (cAMP) response to an element-binding protein (CREB) phosphorylation by preventing the synthesis of cAMP. Additionally, it activates c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (p38), destroying Tyr and MITF and avoiding melanin production. Higher levels of microtubule-associated protein-light chain 3 (LC3-II), autophagy-related protein 5 (Atg5), Beclin 1, and lower levels of p62 demonstrate that PBLE exhibits significant anti-melanogenic effects via an autophagy-induction mechanism, both in vitro and in vivo. Additionally, PBLE significantly reduced the amount of lipid peroxidation while increasing the activity of several antioxidant enzymes in vivo, such as catalase, glutathione, superoxide dismutase, and thioredoxin. PBLE can therefore be employed in topical formulations as a potent skin-whitening agent.
Collapse
Affiliation(s)
- Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Na Hyun Park
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo-Rim Song
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel.: +82-053-950-7754
| |
Collapse
|
5
|
Rapid screening of natural-origin tyrosinase regulators from Vernonia anthelmintica (L.) Willd. by offline two-dimensional liquid chromatography coupled with mass spectrometry. J Pharm Biomed Anal 2022; 219:114978. [DOI: 10.1016/j.jpba.2022.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
6
|
Xie P, Fan L, Huang L, Zhang C. Oxidative polymerization of hydroxytyrosol catalyzed by laccase, tyrosinase or horseradish peroxidase: influencing factors and molecular simulations. J Biomol Struct Dyn 2020; 39:5486-5497. [DOI: 10.1080/07391102.2020.1801512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pujun Xie
- Institute of New Technology of Forestry, Chinese Academy of Forestry, Beijing, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory on Forest Chemical Engineering, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China
| | - Linlin Fan
- Institute of Agro-product Processing, JAAS, Nanjing, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory on Forest Chemical Engineering, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory on Forest Chemical Engineering, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China
| |
Collapse
|