1
|
Peters HA, Weiss D, Boschheidgen M, Mamlins E, Giesel FL, Fluegen G, Kirchner J, Antoch G, Jannusch K. Prognostic potential of integrated morphologic and metabolic parameters of pre-therapeutic [18F]FDG-PET/CT regarding progression-free survival (PFS) and overall survival (OS) in NSCLC-patients. PLoS One 2024; 19:e0307998. [PMID: 39074093 DOI: 10.1371/journal.pone.0307998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
PURPOSE This study aimed to evaluate the prognostic potential of pre-therapeutic [18F]FDG-PET/CT variables regarding prediction of progression-free survival (PFS) and overall survival (OS) in NSCLC-patients. METHOD NSCLC-patients who underwent pre-therapeutic [18F]FDG-PET/CT were retrospectively analyzed. The following imaging features were collected from the primary tumor: tumor size, tumor density, central necrosis, spicules and SUVmax. For standardization, an indexSUVmax was calculated (SUVmax primary tumor/SUVmax liver). Descriptive statistics and correlations of survival time analyses for PFS and OS were calculated using the Kaplan-Meier method and Cox regression including a hazard ratio (HR). A value of p < 0.05 was set as statistically significant. The 95%-confidence intervals (CI) were calculated. The median follow-up time was 63 (IQR 27-106) months. RESULTS This study included a total of 82 patients (25 women, 57 men; mean age: 66 ± 9 years). IndexSUVmax (PFS: HR = 1.0, CI: 1.0-1.1, p = 0.49; OS: HR = 1.0, CI: 0.9-1.2, p = 0.41), tumor size (PFS: HR = 1.0, CI: 0.9-1.0, p = 0.08; OS: HR = 1.0, CI: 0.9-1.0, p = 0.07), tumor density (PFS: HR = 0.9, CI: 0.6-1.4, p = 0.73; OS: HR = 0.3; CI: 0.1-1.1; p = 0.07), central necrosis (PFS: HR = 1.0, CI: 0.6-1.8, p = 0.98; OS: HR = 0.6, CI: 0.2-1.9, p = 0.40) and spicules (PFS: HR = 1.0, CI: 0.6-1.9, p = 0.91; OS: HR = 1.3, CI: 0.4-3.7, p = 0.65) did not significantly affect PFS and OS in the study population. An optimal threshold value for the indexSUVmax was determined by ROC analysis and Youden's index. There was no significant difference in PFS with an indexSUVmax-threshold of 3.8 (13 vs. 27 months; p = 0.45) and in OS with an indexSUVmax-threshold of 4.0 (113 vs. 106 months; p = 0.40). CONCLUSIONS SUVmax and morphologic parameters from pre-therapeutic [18F]FDG-PET/CT were not able to predict PFS and OS in NSCLC-patients.
Collapse
Affiliation(s)
- Helena A Peters
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Daniel Weiss
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Matthias Boschheidgen
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Eduards Mamlins
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Georg Fluegen
- Department of Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Kai Jannusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Maman A, Çiğdem S, Kaya İ, Demirtaş R, Ceylan O, Özmen S. Diagnostic value of FDG PET-CT in differentiating lung adenocarcinoma from squamous cell carcinoma. EJNMMI REPORTS 2024; 8:1. [PMID: 38748067 PMCID: PMC10962626 DOI: 10.1186/s41824-024-00187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 05/19/2024]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. The combination of fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) and computed tomography (CT) has a major impact on the diagnosis, staging, treatment planning and follow-up of lung cancer patients. The maximum standardized uptake value (SUVmax) is an easily performed and most widely used semi-quantitative index for the analysis of FDG PET images and estimation of metabolic activity. This study aimed to investigate the role of PET/CT in differentiating adenocarcinoma (ADC), the most common lung cancer, from squamous cell carcinoma (SCC) by comparing FDG uptake measured as SUVmax. RESULTS Between 2019 and 2022, 76 patients diagnosed with non-small cell lung cancer (NSCLC) at the Department of Pathology, Atatürk University Faculty of Medicine, with histopathologic evidence of adenocarcinoma or squamous cell carcinoma, underwent retrospective analysis using PET/CT scanning to measure PET parameters of the lesions and compare them with histopathology. Among 76 NSCLC patients included in the study, 43 (57%) were histopathologically diagnosed as ADC and 33 (43%) as SCC. SUVmax, SUVmean, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) values of lesions in patients with SCC were statistically significantly higher than those in patients with ADC (p values 0.007, 0.009, 0.003 and 0.04, respectively). CONCLUSIONS Lung SCC has higher metabolic uptake values than ADC, and PET/CT can be used to differentiate them.
Collapse
Affiliation(s)
- Adem Maman
- Department of Nuclear Medicine, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Sadık Çiğdem
- Vocational School of Health Services, Istanbul Aydın University, Istanbul, Turkey
| | - İdris Kaya
- Department of Radiology, Private Buhara Hospital, Erzurum, Turkey
| | - Rabia Demirtaş
- Department of Medical Pathology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Onur Ceylan
- Department of Medical Pathology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Sevilay Özmen
- Department of Medical Pathology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
Frankowska K, Zarobkiewicz M, Dąbrowska I, Bojarska-Junak A. Tumor infiltrating lymphocytes and radiological picture of the tumor. Med Oncol 2023; 40:176. [PMID: 37178270 PMCID: PMC10182948 DOI: 10.1007/s12032-023-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Tumor microenvironment (TME) is a complex entity that includes besides the tumor cells also a whole range of immune cells. Among various populations of immune cells infiltrating the tumor, tumor infiltrating lymphocytes (TILs) are a population of lymphocytes characterized by high reactivity against the tumor component. As, TILs play a key role in mediating responses to several types of therapy and significantly improve patient outcomes in some cancer types including for instance breast cancer and lung cancer, their assessment has become a good predictive tool in the evaluation of potential treatment efficacy. Currently, the evaluation of the density of TILs infiltration is performed by histopathological. However, recent studies have shed light on potential utility of several imaging methods, including ultrasonography, magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT), and radiomics, in the assessment of TILs levels. The greatest attention concerning the utility of radiology methods is directed to breast and lung cancers, nevertheless imaging methods of TILs are constantly being developed also for other malignancies. Here, we focus on reviewing the radiological methods used to assess the level of TILs in different cancer types and on the extraction of the most favorable radiological features assessed by each method.
Collapse
Affiliation(s)
- Karolina Frankowska
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland.
| | - Izabela Dąbrowska
- Department of Interventional Radiology and Neuroradiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
4
|
Vaz SC, Adam JA, Delgado Bolton RC, Vera P, van Elmpt W, Herrmann K, Hicks RJ, Lievens Y, Santos A, Schöder H, Dubray B, Visvikis D, Troost EGC, de Geus-Oei LF. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[ 18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur J Nucl Med Mol Imaging 2022; 49:1386-1406. [PMID: 35022844 PMCID: PMC8921015 DOI: 10.1007/s00259-021-05624-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE 2-[18F]FDG PET/CT is of utmost importance for radiation treatment (RT) planning and response monitoring in lung cancer patients, in both non-small and small cell lung cancer (NSCLC and SCLC). This topic has been addressed in guidelines composed by experts within the field of radiation oncology. However, up to present, there is no procedural guideline on this subject, with involvement of the nuclear medicine societies. METHODS A literature review was performed, followed by a discussion between a multidisciplinary team of experts in the different fields involved in the RT planning of lung cancer, in order to guide clinical management. The project was led by experts of the two nuclear medicine societies (EANM and SNMMI) and radiation oncology (ESTRO). RESULTS AND CONCLUSION This guideline results from a joint and dynamic collaboration between the relevant disciplines for this topic. It provides a worldwide, state of the art, and multidisciplinary guide to 2-[18F]FDG PET/CT RT planning in NSCLC and SCLC. These practical recommendations describe applicable updates for existing clinical practices, highlight potential flaws, and provide solutions to overcome these as well. Finally, the recent developments considered for future application are also reviewed.
Collapse
Affiliation(s)
- Sofia C. Vaz
- Nuclear Medicine Radiopharmacology, Champalimaud Centre for the Unkown, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit A. Adam
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Pierre Vera
- Henri Becquerel Cancer Center, QuantIF-LITIS EA 4108, Université de Rouen, Rouen, France
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Rodney J. Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Yolande Lievens
- Radiation Oncology Department, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Andrea Santos
- Nuclear Medicine Department, CUF Descobertas Hospital, Lisbon, Portugal
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bernard Dubray
- Department of Radiotherapy and Medical Physics, Centre Henri Becquerel, Rouen, France
- QuantIF-LITIS EA4108, University of Rouen, Rouen, France
| | | | - Esther G. C. Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Wang T, Liu J, Lv N, Xuan S, Bai L, Ji B, Gao S. Performance of Ultrasound-Guided Core Biopsy Driven by FDG-avid Supraclavicular Lymph Nodes in Patients With Suspected Lung Cancer. Front Med (Lausanne) 2022; 8:803500. [PMID: 35127759 PMCID: PMC8811154 DOI: 10.3389/fmed.2021.803500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/24/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives Ultrasound-guided core biopsy (UGCB) for supraclavicular lymph nodes (SLNs) represents an attractive procedure to obtain tissues for lung cancer confirmation. The aim of the present study is to evaluate the performance of UGCB driven by FDG-avid SLNs, as performed by nuclear medicine physicians, in patients with suspected lung cancer. Methods Institutional database in our hospital was searched for eligible patients between September 2019 and March 2021. A 3-12 MHz linear probe was used to guide the biopsy process and to ensure that the needle tip was being directed at the metabolically active area that had been indicated by side-by-side PET/CT images. Diagnostic yield, malignancy rate, molecular testing results, and complications were reviewed. Results Among the 54 patients included in this study, definite pathological diagnosis from UGCB specimens was achieved in 53 patients, reaching a diagnostic yield of 98.1% (53/54) and a malignancy rate of 96.2% (51/53). Among the 50 patients confirmed as lung cancer, thirty-eight were spared from further invasive procedures which had been planned. Molecular analyses were adequately performed on all the 38 specimens obtained from non-small cell lung cancer (NSCLS). The positive rate was 36.8% (14/38) for epidermal growth receptor (EGFR) mutation and 31.6% (12/38) for anaplastic lymphoma kinase (ALK) translocation. 28.9% (11/38) of the patients had a tumor proportion score (TPS) ≥ 50% for PD-L1 expression. No complication was observed and the average biopsy time was 15 min. Conclusions Nuclear medicine physicians-performed UGCB driven by FDG-avid SLNs in suspected lung cancer patients could produce a high performance in terms of diagnostic yield, malignancy rate, and molecular analysis, which may obliviate more invasive interventional procedures and lead to fast decisions on subsequent management.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Junbao Liu
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ningning Lv
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shi Xuan
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Bai
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bin Ji
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
- Bin Ji
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Shi Gao
| |
Collapse
|
6
|
Association of radiomic features with epidermal growth factor receptor mutation status in non-small cell lung cancer and survival treated with tyrosine kinase inhibitors. Nucl Med Commun 2019; 40:1091-1098. [PMID: 31469811 DOI: 10.1097/mnm.0000000000001076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Since the discovery of the fact that tyrosine kinase inhibitors could improve progression-free survival for patients with advanced non-small cell lung cancer compared with traditional chemotherapy, it has been extremely important to identify epidermal growth factor receptor mutation status in treatment stratification. Although lack of sufficient biopsy samples limit the precise detection of epidermal growth factor receptor mutation status in clinical practice, and it is difficult to identify the sensitive patients who confer favorable response to tyrosine kinase inhibitors. An increasing number of scholars tried to deal with these problems using methods based on the non-invasive imaging including computed tomography and PET to find the association with epidermal growth factor receptor mutation status and survival treated with tyrosine kinase inhibitor in non-small cell lung cancer. Although the conclusions have not reached a consensus, quantitative and high-throughput radiomics have brought us a new direction and might successfully help identify patients undergoing tyrosine kinase inhibitors who could get significant benefits.
Collapse
|
7
|
Ordu C. Are the metabolic evaluation criteria sufficient for FDG PET/CT after chemo-radiotherapy in non-small cell lung cancer? J Thorac Dis 2019; 11:S1263-S1266. [PMID: 31245104 DOI: 10.21037/jtd.2019.02.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cetin Ordu
- Department of Medical Oncology, Gayrettepe Florence Nightingale Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Advanced PET imaging in oncology: status and developments with current and future relevance to lung cancer care. Curr Opin Oncol 2019; 30:77-83. [PMID: 29251666 DOI: 10.1097/cco.0000000000000430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW This review highlights the status and developments of PET imaging in oncology, with particular emphasis on lung cancer. We discuss the significance of PET for diagnosis, staging, decision-making, monitoring of treatment response, and drug development. The PET key advantage, the noninvasive assessment of functional and molecular tumor characteristics including tumor heterogeneity, as well as PET trends relevant to cancer care are exemplified. RECENT FINDINGS Advances of PET and radiotracer technology are encouraging for multiple fields of oncological research and clinical application, including in-depth assessment of PET images by texture analysis (radiomics). Whole body PET imaging and novel PET tracers allow assessing characteristics of most types of cancer. However, only few PET tracers in addition to F-fluorodeoxyglucose have sufficiently been validated, approved, and are reimbursed for a limited number of indications. Therefore, validation and standardization of PET parameters including tracer dosage, image acquisition, post processing, and reading are required to expand PET imaging as clinically applicable approach. SUMMARY Considering the potential of PET imaging for precision medicine and drug development in lung and other types of cancer, increasing efforts are warranted to standardize PET technology and to provide evidence for PET imaging as a guiding biomarker in nearly all areas of cancer treatment.
Collapse
|
9
|
Hou D, Zhao S, Shi J, Wang L, Wang D, Huang Y, Liao X, Xing X, Du L, Yang L, Liu Y, Zhang Y, Wei D, Liu Y, Zhang K, Li N, Chen W, Qiao Y, He J, Dai M, Wu N. Lung cancer imaging methods in China from 2005 to 2014: A national, multicenter study. Thorac Cancer 2019; 10:708-714. [PMID: 30737899 PMCID: PMC6449240 DOI: 10.1111/1759-7714.12988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The study was conducted to examine changes in diagnostic and staging imaging methods for lung cancer in China over a 10-year period and to determine the relationships between such changes and socioeconomic development. METHODS This was a hospital-based, nationwide, multicenter retrospective study of primary lung cancer cases. The data were extracted from the 10-year primary lung cancer databases at eight tertiary hospitals from various geographic areas in China. The chi-squared test was used to assess the differences and the Cochran-Armitage trend test was used to estimate the trends of changes. RESULTS A total of 7184 lung cancer cases were analyzed. Over the 10-year period, the utilization ratio of diagnostic imaging methods, such as chest computed tomography (CT) and chest magnetic resonance imaging (MRI), increased from 65.79% to 81.42% and from 0.73% to 1.96%, respectively, while the utilization ratio of chest X-ray declined from 50.15% to 30.93%. Staging imaging methods, such as positron emission tomography-CT, neck ultrasound, brain MRI, bone scintigraphy, and bone MRI increased from 0.73% to 9.29%, 22.95% to 47.92%, 8.77% to 40.71%, 42.40% to 62.22%, and 0.88% to 4.65%, respectively; abdominal ultrasound declined from 83.33% to 59.9%. These trends were more notable in less developed areas than in areas with substantial economic development. CONCLUSION Overall, chest CT was the most common radiological diagnostic method for lung cancer in China. Imaging methods for lung cancer tend to be used in a diverse, rational, and regionally balanced manner.
Collapse
Affiliation(s)
- Dong‐Hui Hou
- Department of Diagnostic RadiologyNational Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shi‐Jun Zhao
- Department of Diagnostic RadiologyNational Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ju‐Fang Shi
- Office of Cancer Screening, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Le Wang
- Office of Cancer Screening, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - De‐Bin Wang
- School of Health Services ManagementAnhui Medical UniversityHefeiChina
| | - Yun‐Chao Huang
- Department of Thoracic SurgeryYunnan Cancer HospitalKunmingChina
| | - Xian‐Zhen Liao
- Hunan Office for Cancer Control and ResearchHunan Cancer HospitalChangshaChina
| | - Xiao‐Jing Xing
- Liaoning Office for Cancer Control and ResearchLiaoning Cancer Hospital & InstituteShenyangChina
| | - Ling‐Bin Du
- Zhejiang Office for Cancer Control and ResearchZhejiang Cancer HospitalHangzhouChina
| | - Li Yang
- School of Public HealthGuangxi Medical UniversityNanningChina
| | - Yu‐Qin Liu
- Cancer Epidemiology Research CenterGansu Provincial Cancer HospitalLanzhouChina
| | - Yong‐Zhen Zhang
- Department of EpidemiologyShanxi Provincial Cancer HospitalTaiyuanChina
| | - Dong‐Hua Wei
- Medical DepartmentAnhui Provincial Cancer HospitalHefeiChina
| | - Yun‐Yong Liu
- Liaoning Office for Cancer Control and ResearchLiaoning Cancer Hospital & InstituteShenyangChina
| | - Kai Zhang
- Department of Cancer PreventionNational Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wan‐Qing Chen
- Office of Cancer Screening, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - You‐Lin Qiao
- Department of Cancer EpidemiologyNational Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie He
- Department of Thoracic SurgeryNational Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Min Dai
- Office of Cancer Screening, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Wu
- Department of Diagnostic RadiologyNational Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- PET‐CT CenterNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | | |
Collapse
|
10
|
Zhu Y, Dong M, Yang J, Zhang J. Evaluation of Iodine-125 Interstitial Brachytherapy Using Micro-Positron Emission Tomography/Computed Tomography with 18F-Fluorodeoxyglucose in Hepatocellular Carcinoma HepG2 Xenografts. Med Sci Monit 2019; 25:371-380. [PMID: 30636171 PMCID: PMC6339452 DOI: 10.12659/msm.912590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Iodine-125 interstitial brachytherapy (125I-IBT) is a promising treatment option for unresectable hepatocellular carcinoma (HCC). This study evaluated the usefulness of micro-positron emission tomography/computed tomography (micro-PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) in assessing response to 125I-IBT in HCC HepG2 xenograft. MATERIAL AND METHODS Twelve mice with bilateral HepG2 xenografts were divided into 3 equal groups implanted with iodine-125 seeds into the left xenografts with a dose of 30, 50, and 80 Gy, respectively, and the right xenografts were used as internal controls. Before and 28 days after treatment, the 18F-FDG micro-PET/CT was performed. The ratios of left to right xenografts of tumor volume (RTV), maximum standardized uptake value (RSUVmax), mean optical density of caspase-3 expression (RMODcaspase-3), and apoptosis index (RAI) were compared. RESULTS The RTV means of the 50 and 80 Gy groups were significantly lower than in the 30 Gy group after treatment (P<0.01) and the RTV means after treatment were lower than baseline in the 50 and 80 Gy groups (P<0.05). The RSUVmax mean after treatment was lower than baseline in the 80 Gy group (P<0.05). The RMODCaspase-3 and RAI means of the 80 Gy group were higher than in the 30 Gy group (P<0.05). The RSUVmax was correlated negatively to RMODcaspase-3 (r=-0.624, P<0.05) and RAI (r=-0.651, P<0.05). CONCLUSIONS This study suggest that 125I-IBT inhibits tumor growth via upregulating caspase-3 expression and prompting apoptosis in HCC HepG2 xenografts. The 18F-FDG micro-PET/CT may be a useful functional imaging modality to assess early response to 125I-IBT in HCC HepG2 xenograft.
Collapse
Affiliation(s)
- Yangjun Zhu
- Department of Ultrasonography, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Mengjie Dong
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jun Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jun Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
11
|
Abstract
Over the last few decades, advances in radiation therapy technology have markedly improved radiation delivery. Advancements in treatment planning with the development of image-guided radiotherapy and techniques such as proton therapy, allow precise delivery of high doses of radiation conformed to the tumor. These advancements result in improved locoregional control while reducing radiation dose to surrounding normal tissue. The radiologic manifestations of these techniques can differ from radiation induced lung disease seen with traditional radiation therapy. Awareness of these radiologic manifestations and correlation with radiation treatment plans are important to differentiate expected radiation induced lung injury from recurrence, infection and drug toxicity.
Collapse
|
12
|
Rami-Porta R, Call S, Dooms C, Obiols C, Sánchez M, Travis WD, Vollmer I. Lung cancer staging: a concise update. Eur Respir J 2018; 51:13993003.00190-2018. [PMID: 29700105 DOI: 10.1183/13993003.00190-2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
Diagnosis and clinical staging of lung cancer are fundamental to planning therapy. The techniques for clinical staging, i.e anatomic and metabolic imaging, endoscopies and minimally invasive surgical procedures, should be performed sequentially and with an increasing degree of invasiveness. Intraoperative staging, assessing the magnitude of the primary tumour, the involved structures, and the loco-regional lymphatic spread by means of systematic nodal dissection, is essential in order to achieve a complete resection. In resected tumours, pathological staging, with the systematic study of the resected specimens, is the strongest prognostic indicator and is essential to make further decisions on therapy. In the present decade, the guidelines on lung cancer staging of the American College of Chest Physicians and the European Society of Thoracic Surgeons are based on the best available evidence and are widely followed. Recent advances in the classification of the adenocarcinoma of the lung, with the definition of adenocarcinoma in situ, minimally invasive adenocarcinoma and lepidic predominant adenocarcinoma, and the publication of the eighth edition of the tumour, node and metastasis classification of lung cancer, have to be integrated into the staging process. The present review complements the latest guidelines on lung cancer staging by providing an update of all these issues.
Collapse
Affiliation(s)
- Ramón Rami-Porta
- Dept of Thoracic Surgery, Hospital Universitari Mutua Terrassa, University of Barcelona, Barcelona, Spain.,Network of Centres for Biomedical Research in Respiratory Diseases (CIBERES) Lung Cancer Group, Barcelona, Spain
| | - Sergi Call
- Dept of Thoracic Surgery, Hospital Universitari Mutua Terrassa, University of Barcelona, Barcelona, Spain.,Dept of Morphological Sciences, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christophe Dooms
- Dept of Respiratory Diseases, University Hospitals, KU Leuven, Leuven, Belgium
| | - Carme Obiols
- Dept of Thoracic Surgery, Hospital Universitari Mutua Terrassa, University of Barcelona, Barcelona, Spain
| | - Marcelo Sánchez
- Centre of Imaging Diagnosis, Radiology Dept, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - William D Travis
- Dept of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ivan Vollmer
- Centre of Imaging Diagnosis, Radiology Dept, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Benveniste MF, Welsh J, Viswanathan C, Shroff GS, Betancourt Cuellar SL, Carter BW, Marom EM. Lung Cancer: Posttreatment Imaging: Radiation Therapy and Imaging Findings. Radiol Clin North Am 2018; 56:471-483. [PMID: 29622079 DOI: 10.1016/j.rcl.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this review, we discuss the different radiation delivery techniques available to treat non-small cell lung cancer, typical radiologic manifestations of conventional radiotherapy, and different patterns of lung injury and temporal evolution of the newer radiotherapy techniques. More sophisticated techniques include intensity-modulated radiotherapy, stereotactic body radiotherapy, proton therapy, and respiration-correlated computed tomography or 4-dimensional computed tomography for radiotherapy planning. Knowledge of the radiation treatment plan and technique, the completion date of radiotherapy, and the temporal evolution of radiation-induced lung injury is important to identify expected manifestations of radiation-induced lung injury and differentiate them from tumor recurrence or infection.
Collapse
Affiliation(s)
- Marcelo F Benveniste
- Department of Diagnostic Radiology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - James Welsh
- Department of Radiation Oncology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chitra Viswanathan
- Department of Diagnostic Radiology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Girish S Shroff
- Department of Diagnostic Radiology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sonia L Betancourt Cuellar
- Department of Diagnostic Radiology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Brett W Carter
- Department of Diagnostic Radiology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Edith M Marom
- Department of Diagnostic Radiology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Diagnostic Imaging, The Chaim Sheba Medical Center, Affiliated with Tel Aviv University, Tel Aviv, 2 Derech Sheba, Ramat Gan 5265601, Israel
| |
Collapse
|
14
|
Benveniste MF, Betancourt Cuellar SL, Gomez D, Shroff GS, Carter BW, Benveniste APA, Marom EM. Imaging of Radiation Treatment of Lung Cancer. Semin Ultrasound CT MR 2018; 39:297-307. [PMID: 29807640 DOI: 10.1053/j.sult.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiation therapy is an important modality in the treatment of patients with lung cancer. Recent advances in delivering radiotherapy were designed to improve loco-regional tumor control by focusing higher doses on the tumor. More sophisticated techniques in treatment planning include 3-dimensional conformal radiation therapy, intensity-modulated radiotherapy, stereotactic body radiotherapy, and proton therapy. These methods may result in nontraditional patterns of radiation injury and various radiologic appearances that can be mistaken for recurrence, infection and other lung diseases. Knowledge of radiological manifestations, awareness of new radiation delivery techniques and correlation with radiation treatment plans are essential in order to correctly interpret imaging in these patients.
Collapse
Affiliation(s)
- Marcelo F Benveniste
- Department of Diagnostic Radiology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX.
| | | | - Daniel Gomez
- Department of Radiation Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | - Girish S Shroff
- Department of Diagnostic Radiology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | - Brett W Carter
- Department of Diagnostic Radiology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX
| | | | - Edith M Marom
- Department of Diagnostic Radiology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
15
|
Oikonomou A, Khalvati F, Tyrrell PN, Haider MA, Tarique U, Jimenez-Juan L, Tjong MC, Poon I, Eilaghi A, Ehrlich L, Cheung P. Radiomics analysis at PET/CT contributes to prognosis of recurrence and survival in lung cancer treated with stereotactic body radiotherapy. Sci Rep 2018; 8:4003. [PMID: 29507399 PMCID: PMC5838232 DOI: 10.1038/s41598-018-22357-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/19/2018] [Indexed: 02/08/2023] Open
Abstract
We sought to quantify contribution of radiomics and SUVmax at PET/CT to predict clinical outcome in lung cancer patients treated with stereotactic body radiotherapy (SBRT). 150 patients with 172 lung cancers, who underwent SBRT were retrospectively included. Radiomics were applied on PET/CT. Principal components (PC) for 42 CT and PET-derived features were examined to determine which ones accounted for most of variability. Survival analysis quantified ability of radiomics and SUVmax to predict outcome. PCs including homogeneity, size, maximum intensity, mean and median gray level, standard deviation, entropy, kurtosis, skewness, morphology and asymmetry were included in prediction models for regional control (RC) [PC4-HR:0.38, p = 0.02], distant control (DC) [PC4-HR:0.51, p = 0.02 and PC1-HR:1.12, p = 0.01], recurrence free probability (RFP) [PC1-HR:1.08, p = 0.04], disease specific survival (DSS) [PC2-HR:1.34, p = 0.03 and PC3-HR:0.64, p = 0.02] and overall survival (OS) [PC4-HR:0.45, p = 0.004 and PC3-HR:0.74, p = 0.02]. In combined analysis with SUVmax, PC1 lost predictive ability over SUVmax for RFP [HR:1.1, p = 0.04] and DC [HR:1.13, p = 0.002], while PC4 remained predictive of DC independent of SUVmax [HR:0.5, p = 0.02]. Radiomics remained the only predictors of OS, DSS and RC. Neither SUVmax nor radiomics predicted recurrence free survival. Radiomics on PET/CT provided complementary information for prediction of control and survival in SBRT-treated lung cancer patients.
Collapse
Affiliation(s)
- Anastasia Oikonomou
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| | - Farzad Khalvati
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Pascal N Tyrrell
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Masoom A Haider
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Usman Tarique
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Laura Jimenez-Juan
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Michael C Tjong
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Ian Poon
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Armin Eilaghi
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Lisa Ehrlich
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Patrick Cheung
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Diagnostic Imaging and Newer Modalities for Thoracic Diseases: PET/Computed Tomographic Imaging and Endobronchial Ultrasound for Staging and Its Implication for Lung Cancer. PET Clin 2017; 13:113-126. [PMID: 29157382 DOI: 10.1016/j.cpet.2017.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Modalities to detect and characterize lung cancer are generally divided into those that are invasive [endobronchial ultrasound (EBUS), esophageal ultrasound (EUS), and electromagnetic navigational bronchoscopy (ENMB)] versus noninvasive [chest radiography (CXR), computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI)]. This chapter describes these modalities, the literature supporting their use, and delineates what tests to use to best evaluate the patient with lung cancer.
Collapse
|
17
|
Ito R, Iwano S, Shimamoto H, Umakoshi H, Kawaguchi K, Ito S, Kato K, Naganawa S. A comparative analysis of dual-phase dual-energy CT and FDG-PET/CT for the prediction of histopathological invasiveness of non-small cell lung cancer. Eur J Radiol 2017; 95:186-191. [PMID: 28987666 DOI: 10.1016/j.ejrad.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE To compare dual-phase dual-energy CT (DE-CT) with FDG-PET/CT for predicting histopathological locoregional invasiveness of non-small cell lung cancers (NSCLCs). MATERIALS AND METHODS We selected 63 consecutive patients with NSCLC lesions (37 males, 26 females; age range, 44-85 years; mean age, 69 years) who were evaluated preoperatively by both DE-CT and PET/CT at our institution. Postoperative microscopic invasiveness (lymphatic permeation, vascular invasion, and/or pleural involvement) was reviewed, and we defined locoregionally invasive tumors as those that had at least one positive finding of microscopic invasiveness. DE-CT scanning in the arterial and delayed phases was performed after injection of iodinated contrast media using 140-kVp and 80-kVp tube voltages. Three-dimensional iodine-related attenuation of primary tumors in the arterial and delayed phases was quantified automatically using "syngo Dual Energy Lung Nodules" application software, and the ratio of arterial phase to delayed phase enhancement (A/D ratio) was calculated. The A/D ratio and SUVmax on PET/CT were evaluated with respect to postoperative invasiveness by univariate logistic regression analysis. RESULTS The A/D ratio was significantly correlated with lymphatic permeation, vascular invasion, and pleural involvement (p=0.011, p=0.021, and p=0.010, respectively). In contrast, the SUVmax was significantly correlated with pleural involvement (p=0.020) but not with lymphatic permeation or vascular invasion (p=0.088 and p=0.100, respectively). In the subgroup of patients with lesion diameters ≤2cm, the A/D ratio was significantly correlated with locoregional invasiveness (p=0.040), while the SUVmax was not (p=0.121). CONCLUSION For the prediction of microscopic invasiveness of NSCLCs, the diagnostic performance of dual-phase DE-CT may be comparable to that of FDG-PET/CT.
Collapse
Affiliation(s)
- Rintaro Ito
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan
| | - Shingo Iwano
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan.
| | - Hironori Shimamoto
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan
| | - Hiroyasu Umakoshi
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan
| | - Koji Kawaguchi
- Nagoya University Graduate School of Medicine, Department of Thoracic Surgery, Japan
| | - Shinji Ito
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan
| | - Katsuhiko Kato
- Nagoya University Graduate School of Medicine, Department of Radiological and Medical Laboratory Sciences, Japan
| | - Shinji Naganawa
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan
| |
Collapse
|
18
|
Diagnostic Imaging and Newer Modalities for Thoracic Diseases: PET/Computed Tomographic Imaging and Endobronchial Ultrasound for Staging and Its Implication for Lung Cancer. Surg Clin North Am 2017; 97:733-750. [PMID: 28728712 DOI: 10.1016/j.suc.2017.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Modalities to detect and characterize lung cancer are generally divided into those that are invasive [endobronchial ultrasound (EBUS), esophageal ultrasound (EUS), and electromagnetic navigational bronchoscopy (ENMB)] versus noninvasive [chest radiography (CXR), computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI)]. This chapter describes these modalities, the literature supporting their use, and delineates what tests to use to best evaluate the patient with lung cancer.
Collapse
|