1
|
Tamada T, Takeuchi M, Watanabe H, Higaki A, Moriya K, Kanki A, Fukukura Y, Yamamoto A. Differentiating clinically significant prostate cancer from clinically insignificant prostate cancer using qualitative and semi-quantitative indices of dynamic contrast-enhanced MRI. Discov Oncol 2024; 15:770. [PMID: 39692850 DOI: 10.1007/s12672-024-01668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
PURPOSE To investigate the utility of qualitative and semi-quantitative evaluation of DCE-MRI for detecting clinically significant prostate cancer (csPC). METHODS This retrospective study analyzed 307 lesions in 231 patients who underwent 3.0T MRI. Experienced radiologists assessed PI-RADS v 2.1 assessment category, qualitative contrast enhancement (QCE), contrast enhancement pattern (CEP: type 1, 2, 3), tumor contrast ratio, and tumor size of PC lesions in consensus. Mean and 0-10th-percentile ADC value of the lesion (ADCmean and ADC0-10) were calculated. Specimens obtained from MRI-ultrasound fusion-guided prostate biopsy were used as the pathological reference standard. RESULTS In assessment of tumor aggressiveness, PI-RADS assessment category, QCE, tumor size, and ratio of CEP 2 + 3 were significantly higher in PC with Gleason score (GS) ≥ 3 + 4 (n = 256) than in PC with GS = 6 (n = 51) (P ≤ 0.001). Tumor ADCmean and tumor ADC0-10 were comparable between PC with GS ≥ 3 + 4 and PC with GS = 6 (P = 0.164 to 0.504). Regarding diagnostic performance of csPC in 45 PI-RADS 3 transition zone lesions, only ratio of CEP 2 + 3 was significantly higher in PC with GS ≥ 3 + 4 (n = 31) than in PC with GS = 6 (n = 14) (P = 0.008). CONCLUSION Qualitative DCE-MRI indices may contribute to PC aggressiveness and improve detection of csPC in PI-RADS assessment category 3 lesions.
Collapse
Affiliation(s)
- Tsutomu Tamada
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Mitsuru Takeuchi
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
- Department of Radiology, Radiolonet Tokai, Nagoya, Japan
| | - Hiroyuki Watanabe
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Atsushi Higaki
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Kazunori Moriya
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Akihiko Kanki
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yoshihiko Fukukura
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Akira Yamamoto
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
2
|
Yamamoto T, Okada H, Matsunaga N, Endo M, Tsuzuki T, Kajikawa K, Suzuki K. Clinical characteristics and pathological features of undetectable clinically significant prostate cancer on multiparametric magnetic resonance imaging: A single-center and retrospective study. J Clin Imaging Sci 2024; 14:20. [PMID: 38975058 PMCID: PMC11225522 DOI: 10.25259/jcis_37_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/05/2024] [Indexed: 07/09/2024] Open
Abstract
Objectives The objectives of this study were to clarify the pathological features of clinically significant prostate cancer (csPC) that is undetectable on multiparametric magnetic resonance imaging (mpMRI). Material and Methods This single-center and retrospective study enrolled 33 men with prostate cancer (PC), encompassing 109 PC lesions, who underwent mpMRI before radical prostatectomy. Two radiologists independently assessed the mpMR images of all lesions and compared them with the pathological findings of PC. All PC lesions were marked on resected specimens using prostate imaging reporting and data system version 2.1 and classified into magnetic resonance imaging (MRI)-detectable and MRI-undetectable PC lesions. Each lesion was classified into csPC and clinically insignificant PC. Pathological characteristics were compared between MRI-detectable and MRI-undetectable csPC. Statistical analysis was performed to identify factors associated with MRI detectability. A logistic regression model was used to determine the factors associated with MRI-detectable and MRI-undetectable csPC. Results Among 109 PC lesions, MRI-detectable and MRI-undetectable PCs accounted for 31% (34/109) and 69% (75/109) of lesions, respectively. All MRI-detectable PCs were csPC. MRI-undetectable PCs included 30 cases of csPC (40%). The detectability of csPC on mpMRI was 53% (34/64). The MRI-undetectable csPC group had a shorter major diameter (10.6 ± 6.6 mm vs. 19.0 ± 6.9 mm, P < 0.001), shorter minor diameter (5.7 ± 2.9 mm vs. 10.7 ± 3.4 mm, P < 0.001), and lower percentage of lesions with Gleason pattern 5 (17% vs. 71%, P < 0.001). Shorter minor diameter (odds ratio [OR], 2.62; P = 0.04) and lower percentage of Gleason pattern 5 (OR, 24; P = 0.01) were independent predictors of MRI-undetectable csPC. Conclusion The pathological features of MRI-undetectable csPC included shorter minor diameter and lower percentage of Gleason pattern 5. csPC with shorter minor diameter may not be detected on mpMRI. Some MRI-undetectable csPC lesions exhibited sufficient size and Gleason pattern 5, emphasizing the need for further understanding of pathological factors contributing to MRI detectability.
Collapse
Affiliation(s)
- Takahiro Yamamoto
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hiroaki Okada
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Nozomu Matsunaga
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Makoto Endo
- Department of Radiological Technology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Keishi Kajikawa
- Department of Urology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
3
|
Higaki A, Tamada T, Kido A, Takeuchi M, Ono K, Miyaji Y, Yoshida K, Sanai H, Moriya K, Yamamoto A. Short repetition time diffusion-weighted imaging improves visualization of prostate cancer. Jpn J Radiol 2024; 42:487-499. [PMID: 38123889 PMCID: PMC11056335 DOI: 10.1007/s11604-023-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE This study aimed to assess whether short repetition time (TR) diffusion-weighted imaging (DWI) could improve diffusion contrast in patients with prostate cancer (PCa) compared with long TR (conventional) reference standard DWI. MATERIALS AND METHODS Our Institutional Review Board approved this retrospective study and waived the need for informed consent. Twenty-five patients with suspected PCa underwent multiparametric magnetic resonance imaging (mp-MRI) using a 3.0-T system. DWI was performed with TR of 1850 ms (short) and 6000 ms (long) with b-values of 0, 1000, and 2000s/mm2. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), visual score, apparent diffusion coefficient (ADC), and diagnostic performance were compared between short and long TR DWI for both b-values. The statistical tests included paired t-test for SNR and CNR; Wilcoxon signed-rank test for VA; Pearson's correlation and Bland-Altman plot analysis for ADC; and McNemar test and receiver operating characteristic analysis and Delong test for diagnostic performance. RESULTS Regarding b1000, CNR and visual score were significantly higher in short TR compared with long TR (P = .003 and P = .002, respectively), without significant difference in SNR (P = .21). Considering b2000, there was no significant difference in visual score between short and long TR (P = .07). However, SNR and CNR in long TR were higher (P = .01 and P = .04, respectively). ADC showed significant correlations, without apparent bias for ADC between short and long TR for both b-values. For diagnostic performance of DWI between short and long TR for both b-values, one out of five readers noted a significant difference, with the short TR for both b-values demonstrating superior performance. CONCLUSIONS Our data showed that the short TR DWI1000 may provide better image quality than did the long TR DWI1000 and may improve visualization and diagnostic performance of PCa for readers.
Collapse
Affiliation(s)
- Atsushi Higaki
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan.
| | - Tsutomu Tamada
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan
| | - Ayumu Kido
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan
| | - Mitsuru Takeuchi
- Department of Radiology, Radiolonet Tokai, Nagoya, 460-8501, Japan
| | - Kentaro Ono
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan
| | - Yoshiyuki Miyaji
- Department of Urology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan
| | - Koji Yoshida
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan
| | - Hiroyasu Sanai
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan
| | - Kazunori Moriya
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan
| | - Akira Yamamoto
- Department of Radiology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, Japan
| |
Collapse
|
4
|
Diffusion-weighted imaging in prostate cancer. MAGMA (NEW YORK, N.Y.) 2021; 35:533-547. [PMID: 34491467 DOI: 10.1007/s10334-021-00957-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022]
Abstract
Diffusion-weighted imaging (DWI), a key component in multiparametric MRI (mpMRI), is useful for tumor detection and localization in clinically significant prostate cancer (csPCa). The Prostate Imaging Reporting and Data System versions 2 and 2.1 (PI-RADS v2 and PI-RADS v2.1) emphasize the role of DWI in determining PIRADS Assessment Category in each of the transition and peripheral zones. In addition, several recent studies have demonstrated comparable performance of abbreviated biparametric MRI (bpMRI), which incorporates only T2-weighted imaging and DWI, compared with mpMRI with dynamic contrast-enhanced MRI. Therefore, further optimization of DWI is essential to achieve clinical application of bpMRI for efficient detection of csPC in patients with elevated PSA levels. Although DWI acquisition is routinely performed using single-shot echo-planar imaging, this method suffers from such as susceptibility artifact and anatomic distortion, which remain to be solved. In this review article, we will outline existing problems in standard DWI using the single-shot echo-planar imaging sequence; discuss solutions that employ newly developed imaging techniques, state-of-the-art technologies, and sequences in DWI; and evaluate the current status of quantitative DWI for assessment of tumor aggressiveness in PC.
Collapse
|
5
|
Quantitative diffusion-weighted imaging and dynamic contrast-enhanced MR imaging for assessment of tumor aggressiveness in prostate cancer at 3T. Magn Reson Imaging 2021; 83:152-159. [PMID: 34454006 DOI: 10.1016/j.mri.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 07/13/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To compare diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MR imaging (DCE-MRI) for characterization of prostate cancer (PC). METHODS 104 PC patients who underwent prostate multiparametric MRI at 3T including DWI and DCE-MRI before MRI-guided biopsy or radical prostatectomy. Apparent diffusion coefficient (ADC) with histogram analysis (mean, 0-25th percentile, skewness, and kurtosis), intravoxel incoherent motion model including D and f; stretched exponential model including distributed diffusion coefficient (DDC) and a; and permeability parameters including Ktrans, Kep, and Ve were obtained from a region of interest placed on the dominant tumor of each patient. RESULTS ADCmean, ADC0-25, D, DDC, and Ve were significantly lower and Kep was significantly higher in GS ≥ 3 + 4 tumors (n = 89) than in GS = 3 + 3 tumors (n = 15), and also in GS ≥ 4 + 3 tumors (n = 57) than in GS ≤ 3 + 4 tumors (n = 47) (P < 0.001 to P = 0.040). f was significantly lower in GS ≥ 4 + 3 tumors than in GS ≤ 3 + 4 tumors (P = 0.022), but there was no significant difference between GS = 3 + 3 tumors and GS ≥ 3 + 4 tumors, or between the remaining metrics in both comparisons. In metrics with area under the curve (AUC) >0.80, there was a significant difference in AUC between ADC0-25 and D, and DDC for separating GS ≤ 3 + 4 tumors from GS ≥ 4 + 3 tumors (P = 0.040 and P = 0.022, respectively). There were no significant differences between metrics with AUC > 0.80 for separating GS = 3 + 3 tumors from GS ≥ 3 + 4 tumors. ADC0-25 had the highest correlation with Gleason grade (ρ = -0.625, P < 0.001). CONCLUSIONS DWI and DCE-MRI showed no apparent clinical superiority of non-Gaussian models or permeability MRI over the mono-exponential model for assessment of tumor aggressiveness in PC.
Collapse
|
6
|
Boschheidgen M, Schimmöller L, Kasprowski L, Abrar D, Arsov C, Albers P, Antoch G, Wittsack HJ, Ullrich T. Arterial spin labelling as a gadolinium-free alternative in the detection of prostate cancer. Magn Reson Imaging 2021; 80:33-38. [PMID: 33905833 DOI: 10.1016/j.mri.2021.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE To determine the capability of Gadolinium-free arterial spin labelling (ASL) sequences as novel, contrast-free, non-invasive alternative perfusion imaging method to differentiate prostate cancer (PCA) from benign prostate tissue compared to conventional DCE MRI. METHODS Thirty men with histologically confirmed PCA were included in this prospectively enrolled single center cohort study. All patients received multiparametric MRI (T2, DWI, DCE) at 3 T with additional ASL of the PCA lesion. Primary endpoint was differentiability of PCA versus benign prostate tissue by signal intensities (SI) and contrast ratios (CR) in ASL in comparison to DCE. For DCE also Signal-Enhancement-Ratio (SER) of native and early contrast enhancement SI was assessed. Secondary objectives were differences regarding PCA localisation in peripheral (PZ) or transition zone (TZ) and PCA detection. RESULTS In both, ASL and DCE, average SI of PCA differed significantly from SI in benign tissue in the TZ and PZ (p < 0,01, respectively). ASL had significantly higher CR discerning PCA and benign tissue in PZ and TZ (PZ = 5.19; TZ = 6.45) compared to DCE SI (PZ = 1.61; TZ = 1.43) and DCE SER (PZ = 1.59; TZ = 1.43) (p < 0.01, respectively). In subjective evaluation, PCA could be detected in ASL in 28 patients, compared to 29 in DCE. CONCLUSION ASL had significantly higher CR differentiating PCA from benign tissue in PZ and TZ compared to DCE. Visual detection of PCA does not differ significantly between the two sequences. As perfusion gadolinium-based contrast media is seen more critical in the last few years, ASL seems to be a promising alternative to DCE in PCA detection.
Collapse
Affiliation(s)
- M Boschheidgen
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - L Schimmöller
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - L Kasprowski
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - D Abrar
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - C Arsov
- University Dusseldorf, Medical Faculty, Department of Urology, D-40225 Dusseldorf, Germany.
| | - P Albers
- University Dusseldorf, Medical Faculty, Department of Urology, D-40225 Dusseldorf, Germany.
| | - G Antoch
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - H J Wittsack
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| | - T Ullrich
- University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, D-40225 Dusseldorf, Germany.
| |
Collapse
|
7
|
Beyer T, Schlemmer HP, Weber MA, Thierfelder KM. PI-RADS 2.1 - Image Interpretation: The Most Important Updates and Their Clinical Implications. ROFO-FORTSCHR RONTG 2020; 193:787-796. [PMID: 33348384 DOI: 10.1055/a-1324-4010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Multiparametric magnetic resonance imaging (MRI) of the prostate plays a central role in the diagnosis of patients with suspected prostate cancer. The increasing distribution and application of the guideline for the standardization of image acquisition, evaluation, and reporting (Prostate Imaging - Reporting and Data System, PI-RADS), which was updated in 2019 to version 2.1, contributes to the success of the technique. MATERIALS AND METHODS The most important updates of PI-RADS version 2.1 presented in 2019 compared to the previous version PI-RADS 2.0 are highlighted and interpreted with regard to their clinical implications. RESULTS PI-RADS version 2.1 aims to simplify the application of the scoring scheme without changing the basic concept of dominant sequences (DWI in the peripheral zone, T2 in the transition zone). Of particular importance are the increasing role of diffusion-weighted imaging in the transition zone, the now mandatory high b-value of at least 1400 s/mm2, and new information on the assessment of the central zone and the anterior fibromuscular stroma. CONCLUSION PI-RADS version 2.1 published in 2019 addresses a number of changes to the previous version, including both the examination technique and image interpretation. Prospective clinical studies have yet to prove the extent to which the goals of reducing interreader variability and increasing the detection rate in the transition zone will be achieved. KEY POINTS · The new PI-RADS version 2.1. includes changes regarding image interpretation and examination technique. · The role of diffusion-weighted imaging is strengthened in the transition zone. · An ultra-high b-value of at least 1400 s/mm2 is mandatory according to PI-RADS 2.1. · Biparametric MRI is not recommended for general application. CITATION FORMAT · Beyer T, Schlemmer H, Weber M et al. PI-RADS 2.1 - Image Interpretation: The Most Important Updates and Their Clinical Implications. Fortschr Röntgenstr 2021; 193: 787 - 795.
Collapse
Affiliation(s)
- Thomas Beyer
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | | | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Kolja M Thierfelder
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
8
|
Harland N, Stenzl A, Todenhöfer T. Role of Multiparametric Magnetic Resonance Imaging in Predicting Pathologic Outcomes in Prostate Cancer. World J Mens Health 2020; 39:38-47. [PMID: 32648376 PMCID: PMC7752518 DOI: 10.5534/wjmh.200030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/10/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
Multiparametric magnetic resonance imaging (mpMRI) and the introduction of standardized protocols for its interpretation have had a significant impact on the field of prostate cancer (PC). Multiple randomized controlled trials have shown that the sensitivity for detection of clinically significant PC is increased when mpMRI results are the basis for indication of a prostate biopsy. The added value with regards to sensitivity has been strongest for patients with persistent suspicion for PC after a prior negative biopsy. Although enhanced sensitivity of mpMRI is convincing, studies that have compared mpMRI with prostatectomy specimens prepared by whole-mount section analysis have shown a significant number of lesions that were not detected by mpMRI. In this context, the importance of an additional systematic biopsy (SB) is still being debated. While SB in combination with targeted biopsies leads to an increased detection rate, most of the tumors detected by SB only are considered clinically insignificant. Currently, multiple risk calculation tools are being developed that include not only clinical parameters but mpMRI results in addition to clinical parameters in order to improve risk stratification for PC, such as the Partin tables. In summary, mpMRI of the prostate has become a standard procedure recommended by multiple important guidelines for the diagnostic work-up of patients with suspicion of PC.
Collapse
Affiliation(s)
- Niklas Harland
- Department of Urology, University Hospital Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, Germany.,Medical School, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Tilman Todenhöfer
- Medical School, Eberhard-Karls-University Tübingen, Tübingen, Germany.,Clinical Trial Unit, Studienpraxis Urologie, Nürtingen, Germany.
| |
Collapse
|
9
|
Pepe P, Garufi A, Priolo GD, Pennisi M, Fraggetta F. Early Second Round Targeted Biopsy of PI-RADS Score 3 or 4 in 256 Men With Persistent Suspicion of Prostate Cancer. In Vivo 2019; 33:897-901. [PMID: 31028214 PMCID: PMC6559925 DOI: 10.21873/invivo.11556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM The aim of the study was to determine the rate of clinically significant prostate cancer (csPCa) cases in men submitted to early second round mpMRI/TRUS (multiparametric magnetic resonance imaging/transrectal ultrasound) fusion biopsy (TPBx). MATERIALS AND METHODS From January 2016 to December 2018, 256 men with a PI-RADS (Prostate Imaging-Reporting and Data System) score 3 (80 cases) or 4 (176 cases) and negative repeat transperineal saturation biopsy plus TPBx, underwent a new TPBx (four cores) for the persistent clinical suspicion of cancer. The accuracy of mpMRI ADC (apparent diffusion coefficient) values in the diagnosis of csPCa were evaluated. RESULTS Overall detection rate of csPCa was equal to 10.1% (26/256 cases): 2.5% (2/80) versus 13.6% (24/176) had a PI-RADS score equal to 3 versus 4, respectively. The presence of csPCa was significantly correlated with an ADC value of 0.747×10-3 mm2/sec. CONCLUSION A negative TBPx missed a csPCa in 13.6% of PI-RADS score 4 that was diagnosed by an early second round TBPx; the evaluation of ADC maps could select mpMRI lesions deserving a repeat TPBx.
Collapse
Affiliation(s)
- Pietro Pepe
- Urology Unit, Cannizzaro Hospital, Catania, Italy
| | | | | | | | | |
Collapse
|