1
|
Nishida N. Advancements in Artificial Intelligence-Enhanced Imaging Diagnostics for the Management of Liver Disease-Applications and Challenges in Personalized Care. Bioengineering (Basel) 2024; 11:1243. [PMID: 39768061 PMCID: PMC11673237 DOI: 10.3390/bioengineering11121243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Liver disease can significantly impact life expectancy, making early diagnosis and therapeutic intervention critical challenges in medical care. Imaging diagnostics play a crucial role in diagnosing and managing liver diseases. Recently, the application of artificial intelligence (AI) in medical imaging analysis has become indispensable in healthcare. AI, trained on vast datasets of medical images, has sometimes demonstrated diagnostic accuracy that surpasses that of human experts. AI-assisted imaging diagnostics are expected to contribute significantly to the standardization of diagnostic quality. Furthermore, AI has the potential to identify image features that are imperceptible to humans, thereby playing an essential role in clinical decision-making. This capability enables physicians to make more accurate diagnoses and develop effective treatment strategies, ultimately improving patient outcomes. Additionally, AI is anticipated to become a powerful tool in personalized medicine. By integrating individual patient imaging data with clinical information, AI can propose optimal plans for treatment, making it an essential component in the provision of the most appropriate care for each patient. Current reports highlight the advantages of AI in managing liver diseases. As AI technology continues to evolve, it is expected to advance personalized diagnostics and treatments and contribute to overall improvements in healthcare quality.
Collapse
Affiliation(s)
- Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osakasayama 589-8511, Japan
| |
Collapse
|
2
|
Loper MR, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging. Tomography 2024; 10:1814-1831. [PMID: 39590942 PMCID: PMC11598375 DOI: 10.3390/tomography10110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Advancements in artificial intelligence (AI) have significantly transformed the field of abdominal radiology, leading to an improvement in diagnostic and disease management capabilities. This narrative review seeks to evaluate the current standing of AI in abdominal imaging, with a focus on recent literature contributions. This work explores the diagnosis and characterization of hepatobiliary, pancreatic, gastric, colonic, and other pathologies. In addition, the role of AI has been observed to help differentiate renal, adrenal, and splenic disorders. Furthermore, workflow optimization strategies and quantitative imaging techniques used for the measurement and characterization of tissue properties, including radiomics and deep learning, are highlighted. An assessment of how these advancements enable more precise diagnosis, tumor description, and body composition evaluation is presented, which ultimately advances the clinical effectiveness and productivity of radiology. Despite the advancements of AI in abdominal imaging, technical, ethical, and legal challenges persist, and these challenges, as well as opportunities for future development, are highlighted.
Collapse
Affiliation(s)
| | - Mina S. Makary
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| |
Collapse
|
3
|
Arribas Anta J, Moreno-Vedia J, García López J, Rios-Vives MA, Munuera J, Rodríguez-Comas J. Artificial intelligence for detection and characterization of focal hepatic lesions: a review. Abdom Radiol (NY) 2024:10.1007/s00261-024-04597-x. [PMID: 39369107 DOI: 10.1007/s00261-024-04597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
Focal liver lesions (FLL) are common incidental findings in abdominal imaging. While the majority of FLLs are benign and asymptomatic, some can be malignant or pre-malignant, and need accurate detection and classification. Current imaging techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI), play a crucial role in assessing these lesions. Artificial intelligence (AI), particularly deep learning (DL), offers potential solutions by analyzing large data to identify patterns and extract clinical features that aid in the early detection and classification of FLLs. This manuscript reviews the diagnostic capacity of AI-based algorithms in processing CT and MRIs to detect benign and malignant FLLs, with an emphasis in the characterization and classification of these lesions and focusing on differentiating benign from pre-malignant and potentially malignant lesions. A comprehensive literature search from January 2010 to April 2024 identified 45 relevant studies. The majority of AI systems employed convolutional neural networks (CNNs), with expert radiologists providing reference standards through manual lesion delineation, and histology as the gold standard. The studies reviewed indicate that AI-based algorithms demonstrate high accuracy, sensitivity, specificity, and AUCs in detecting and characterizing FLLs. These algorithms excel in differentiating between benign and malignant lesions, optimizing diagnostic protocols, and reducing the needs of invasive procedures. Future research should concentrate on the expansion of data sets, the improvement of model explainability, and the validation of AI tools across a range of clinical setting to ensure the applicability and reliability of such tools.
Collapse
Affiliation(s)
- Julia Arribas Anta
- Department of Gastroenterology, University Hospital, 12 Octubre, Madrid, Spain
| | - Juan Moreno-Vedia
- Scientific and Technical Department, Sycai Technologies S.L., Barcelona, Spain
| | - Javier García López
- Scientific and Technical Department, Sycai Technologies S.L., Barcelona, Spain
| | - Miguel Angel Rios-Vives
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barceona, Spain
| | - Josep Munuera
- Diagnostic Imaging Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Advanced Medical Imaging, Artificial Intelligence, and Imaging-Guided Therapy Research Group, Institut de Recerca Sant Pau - Centre CERCA, Barceona, Spain
| | | |
Collapse
|
4
|
Chatzipanagiotou OP, Loukas C, Vailas M, Machairas N, Kykalos S, Charalampopoulos G, Filippiadis D, Felekouras E, Schizas D. Artificial intelligence in hepatocellular carcinoma diagnosis: a comprehensive review of current literature. J Gastroenterol Hepatol 2024; 39:1994-2005. [PMID: 38923550 DOI: 10.1111/jgh.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) diagnosis mainly relies on its pathognomonic radiological profile, obviating the need for biopsy. The project of incorporating artificial intelligence (AI) techniques in HCC aims to improve the performance of image recognition. Herein, we thoroughly analyze and evaluate proposed AI models in the field of HCC diagnosis. METHODS A comprehensive review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases with the end of search date being the 30th of September 2023. The MESH terms "Artificial Intelligence," "Liver Cancer," "Hepatocellular Carcinoma," "Machine Learning," and "Deep Learning" were searched in the title and/or abstract. All references of the obtained articles were also evaluated for any additional information. RESULTS Our search resulted in 183 studies meeting our inclusion criteria. Across all diagnostic modalities, reported area under the curve (AUC) of most developed models surpassed 0.900. A B-mode US and a contrast-enhanced US model achieved AUCs of 0.947 and 0.957, respectively. Regarding the more challenging task of HCC diagnosis, a 2021 deep learning model, trained with CT scans, classified hepatic malignant lesions with an AUC of 0.986. Finally, a MRI machine learning model developed in 2021 displayed an AUC of 0.975 when differentiating small HCCs from benign lesions, while another MRI-based model achieved HCC diagnosis with an AUC of 0.970. CONCLUSIONS AI tools may lead to significant improvement in diagnostic management of HCC. Many models fared better or comparable to experienced radiologists while proving capable of elevating radiologists' accuracy, demonstrating promising results for AI implementation in HCC-related diagnostic tasks.
Collapse
Affiliation(s)
- Odysseas P Chatzipanagiotou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Constantinos Loukas
- Laboratory of Medical Physics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos Machairas
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Stylianos Kykalos
- Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Georgios Charalampopoulos
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Dimitrios Filippiadis
- Second Department of Radiology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangellos Felekouras
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
5
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
6
|
Salehi MA, Harandi H, Mohammadi S, Shahrabi Farahani M, Shojaei S, Saleh RR. Diagnostic Performance of Artificial Intelligence in Detection of Hepatocellular Carcinoma: A Meta-analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1297-1311. [PMID: 38438694 PMCID: PMC11300422 DOI: 10.1007/s10278-024-01058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Due to the increasing interest in the use of artificial intelligence (AI) algorithms in hepatocellular carcinoma detection, we performed a systematic review and meta-analysis to pool the data on diagnostic performance metrics of AI and to compare them with clinicians' performance. A search in PubMed and Scopus was performed in January 2024 to find studies that evaluated and/or validated an AI algorithm for the detection of HCC. We performed a meta-analysis to pool the data on the metrics of diagnostic performance. Subgroup analysis based on the modality of imaging and meta-regression based on multiple parameters were performed to find potential sources of heterogeneity. The risk of bias was assessed using Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST) reporting guidelines. Out of 3177 studies screened, 44 eligible studies were included. The pooled sensitivity and specificity for internally validated AI algorithms were 84% (95% CI: 81,87) and 92% (95% CI: 90,94), respectively. Externally validated AI algorithms had a pooled sensitivity of 85% (95% CI: 78,89) and specificity of 84% (95% CI: 72,91). When clinicians were internally validated, their pooled sensitivity was 70% (95% CI: 60,78), while their pooled specificity was 85% (95% CI: 77,90). This study implies that AI can perform as a diagnostic supplement for clinicians and radiologists by screening images and highlighting regions of interest, thus improving workflow.
Collapse
Affiliation(s)
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Shayan Shojaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramy R Saleh
- Department of Oncology, McGill University, Montreal, QC, H3A 0G4, Canada
- Division of Medical Oncology, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
7
|
Huang J, Bai X, Qiu Y, He X. Application of AI on cholangiocarcinoma. Front Oncol 2024; 14:1324222. [PMID: 38347839 PMCID: PMC10859478 DOI: 10.3389/fonc.2024.1324222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Cholangiocarcinoma, classified as intrahepatic, perihilar, and extrahepatic, is considered a deadly malignancy of the hepatobiliary system. Most cases of cholangiocarcinoma are asymptomatic. Therefore, early detection of cholangiocarcinoma is significant but still challenging. The routine screening of a tumor lacks specificity and accuracy. With the application of AI, high-risk patients can be easily found by analyzing their clinical characteristics, serum biomarkers, and medical images. Moreover, AI can be used to predict the prognosis including recurrence risk and metastasis. Although they have some limitations, AI algorithms will still significantly improve many aspects of cholangiocarcinoma in the medical field with the development of computing power and technology.
Collapse
Affiliation(s)
| | | | | | - Xiaodong He
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, Matsui Y, Nozaki T, Nakaura T, Fujima N, Tatsugami F, Yanagawa M, Hirata K, Yamada A, Tsuboyama T, Kawamura M, Fujioka T, Naganawa S. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol 2024; 42:3-15. [PMID: 37540463 PMCID: PMC10764412 DOI: 10.1007/s11604-023-01474-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Abstract
In this review, we address the issue of fairness in the clinical integration of artificial intelligence (AI) in the medical field. As the clinical adoption of deep learning algorithms, a subfield of AI, progresses, concerns have arisen regarding the impact of AI biases and discrimination on patient health. This review aims to provide a comprehensive overview of concerns associated with AI fairness; discuss strategies to mitigate AI biases; and emphasize the need for cooperation among physicians, AI researchers, AI developers, policymakers, and patients to ensure equitable AI integration. First, we define and introduce the concept of fairness in AI applications in healthcare and radiology, emphasizing the benefits and challenges of incorporating AI into clinical practice. Next, we delve into concerns regarding fairness in healthcare, addressing the various causes of biases in AI and potential concerns such as misdiagnosis, unequal access to treatment, and ethical considerations. We then outline strategies for addressing fairness, such as the importance of diverse and representative data and algorithm audits. Additionally, we discuss ethical and legal considerations such as data privacy, responsibility, accountability, transparency, and explainability in AI. Finally, we present the Fairness of Artificial Intelligence Recommendations in healthcare (FAIR) statement to offer best practices. Through these efforts, we aim to provide a foundation for discussing the responsible and equitable implementation and deployment of AI in healthcare.
Collapse
Affiliation(s)
- Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan.
| | | | - Shohei Fujita
- Department of Radiology, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-ku, Kumamoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Wang J, Xia Y, Cao Y, Zeng X, Luo H, Cai X, Shi M, Luo H, Wang D. Safety and feasibility of laparoscopic radical resection for bismuth types III and IV hilar cholangiocarcinoma: a single-center experience from China. Front Oncol 2023; 13:1280513. [PMID: 38188306 PMCID: PMC10766688 DOI: 10.3389/fonc.2023.1280513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Background Surgery represents the only cure for hilar cholangiocarcinoma (HC). However, laparoscopic radical resection remains technically challenging owing to the complex anatomy and reconstruction required during surgery. Therefore, reports on laparoscopic surgery (LS) for HC, especially for types III and IV, are limited. This study aimed to evaluate the safety and feasibility of laparoscopic radical surgery for Bismuth types III and IV HC. Methods The data of 16 patients who underwent LS and 9 who underwent open surgery (OS) for Bismuth types III and IV HC at Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, between December 2017 and January 2022 were analyzed. Basic patient information, Bismuth-Corlette type, AJCC staging, postoperative complications, pathological findings, and follow-up results were evaluated. Results Sixteen patients underwent LS and 9 underwent OS for HC. According to the preoperative imaging data, there were four cases of Bismuth type IIIa, eight of type IIIb, and four of type IV in the LS group and two of type IIIa, four of type IIIb, and three of type IV in the OS group (P>0.05). There were no significant differences in age, sex, ASA score, comorbidity, preoperative percutaneous transhepatic biliary drainage rate, history of abdominal surgery, or preoperative laboratory tests between the two groups (P>0.05). Although the mean operative time and mean intraoperative blood loss were higher in the LS group than in OS group, the differences were not statistically significant (P=0.121 and P=0.115, respectively). Four patients (25%) in the LS group and two (22.2%) in the OS group experienced postoperative complications (P>0.05). No significant differences were observed in other surgical outcomes and pathologic findings between the two groups. Regarding the tumor recurrence rate, there was no difference between the groups (P>0.05) during the follow-up period (23.9 ± 13.3 months vs. 17.8 ± 12.3 months, P=0.240). Conclusion Laparoscopic radical resection of Bismuth types III and IV HC remains challenging, and extremely delicate surgical skills are required when performing extended hemihepatectomy followed by complex bilioenteric reconstructions. However, this procedure is generally safe and feasible for hepatobiliary surgeons with extensive laparoscopy experience.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yang Xia
- Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Yuan Cao
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xintao Zeng
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Hua Luo
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Xianfu Cai
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Mingsong Shi
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Huiwen Luo
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Decai Wang
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
10
|
Xu Y, Zhou C, He X, Song R, Liu Y, Zhang H, Wang Y, Fan Q, Chen W, Wu J, Wang J, Guo D. Deep learning-assisted LI-RADS grading and distinguishing hepatocellular carcinoma (HCC) from non-HCC based on multiphase CT: a two-center study. Eur Radiol 2023; 33:8879-8888. [PMID: 37392233 DOI: 10.1007/s00330-023-09857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES To develop a deep learning (DL) method that can determine the Liver Imaging Reporting and Data System (LI-RADS) grading of high-risk liver lesions and distinguish hepatocellular carcinoma (HCC) from non-HCC based on multiphase CT. METHODS This retrospective study included 1049 patients with 1082 lesions from two independent hospitals that were pathologically confirmed as HCC or non-HCC. All patients underwent a four-phase CT imaging protocol. All lesions were graded (LR 4/5/M) by radiologists and divided into an internal (n = 886) and external cohort (n = 196) based on the examination date. In the internal cohort, Swin-Transformer based on different CT protocols were trained and tested for their ability to LI-RADS grading and distinguish HCC from non-HCC, and then validated in the external cohort. We further developed a combined model with the optimal protocol and clinical information for distinguishing HCC from non-HCC. RESULTS In the test and external validation cohorts, the three-phase protocol without pre-contrast showed κ values of 0.6094 and 0.4845 for LI-RADS grading, and its accuracy was 0.8371 and 0.8061, while the accuracy of the radiologist was 0.8596 and 0.8622, respectively. The AUCs in distinguishing HCC from non-HCC were 0.865 and 0.715 in the test and external validation cohorts, while those of the combined model were 0.887 and 0.808. CONCLUSION The Swin-Transformer based on three-phase CT protocol without pre-contrast could feasibly simplify LI-RADS grading and distinguish HCC from non-HCC. Furthermore, the DL model have the potential in accurately distinguishing HCC from non-HCC using imaging and highly characteristic clinical data as inputs. CLINICAL RELEVANCE STATEMENT The application of deep learning model for multiphase CT has proven to improve the clinical applicability of the Liver Imaging Reporting and Data System and provide support to optimize the management of patients with liver diseases. KEY POINTS • Deep learning (DL) simplifies LI-RADS grading and helps distinguish hepatocellular carcinoma (HCC) from non-HCC. • The Swin-Transformer based on the three-phase CT protocol without pre-contrast outperformed other CT protocols. • The Swin-Transformer provide help in distinguishing HCC from non-HCC by using CT and characteristic clinical information as inputs.
Collapse
Affiliation(s)
- Yang Xu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Chaoyang Zhou
- Department of Radiology, The First Affiliated Hospital of Army Military Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaojuan He
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Rao Song
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yangyang Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haiping Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yudong Wang
- Institute of Research, Ocean International Center, InferVision, Chaoyang District, Beijing, 100025, China
| | - Qianrui Fan
- Institute of Research, Ocean International Center, InferVision, Chaoyang District, Beijing, 100025, China
| | - Weidao Chen
- Institute of Research, Ocean International Center, InferVision, Chaoyang District, Beijing, 100025, China
| | - Jiangfen Wu
- Institute of Research, Ocean International Center, InferVision, Chaoyang District, Beijing, 100025, China
| | - Jian Wang
- Department of Radiology, The First Affiliated Hospital of Army Military Medical University, Chongqing, 400038, People's Republic of China.
| | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
11
|
Tatsugami F, Nakaura T, Yanagawa M, Fujita S, Kamagata K, Ito R, Kawamura M, Fushimi Y, Ueda D, Matsui Y, Yamada A, Fujima N, Fujioka T, Nozaki T, Tsuboyama T, Hirata K, Naganawa S. Recent advances in artificial intelligence for cardiac CT: Enhancing diagnosis and prognosis prediction. Diagn Interv Imaging 2023; 104:521-528. [PMID: 37407346 DOI: 10.1016/j.diii.2023.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in artificial intelligence (AI) for cardiac computed tomography (CT) have shown great potential in enhancing diagnosis and prognosis prediction in patients with cardiovascular disease. Deep learning, a type of machine learning, has revolutionized radiology by enabling automatic feature extraction and learning from large datasets, particularly in image-based applications. Thus, AI-driven techniques have enabled a faster analysis of cardiac CT examinations than when they are analyzed by humans, while maintaining reproducibility. However, further research and validation are required to fully assess the diagnostic performance, radiation dose-reduction capabilities, and clinical correctness of these AI-driven techniques in cardiac CT. This review article presents recent advances of AI in the field of cardiac CT, including deep-learning-based image reconstruction, coronary artery motion correction, automatic calcium scoring, automatic epicardial fat measurement, coronary artery stenosis diagnosis, fractional flow reserve prediction, and prognosis prediction, analyzes current limitations of these techniques and discusses future challenges.
Collapse
Affiliation(s)
- Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shohei Fujita
- Departmen of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital N15, W5, Kita-Ku, Sapporo 060-8638, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-0016, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
12
|
Chakrabarti S, Rao US. Lightweight neural network for smart diagnosis of cholangiocarcinoma using histopathological images. Sci Rep 2023; 13:18854. [PMID: 37914815 PMCID: PMC10620203 DOI: 10.1038/s41598-023-46152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023] Open
Abstract
Traditional Cholangiocarcinoma detection methodology, which involves manual interpretation of histopathological images obtained after biopsy, necessitates extraordinary domain expertise and a significant level of subjectivity, resulting in several deaths due to improper or delayed detection of this cancer that develops in the bile duct lining. Automation in the diagnosis of this dreadful disease is desperately needed to allow for more effective and faster identification of the disease with a better degree of accuracy and reliability, ultimately saving countless human lives. The primary goal of this study is to develop a machine-assisted method of automation for the accurate and rapid identification of Cholangiocarcinoma utilizing histopathology images with little preprocessing. This work proposes CholangioNet, a novel lightweight neural network for detecting Cholangiocarcinoma utilizing histological RGB images. The histological RGB image dataset considered in this research work was found to have limited number of images, hence data augmentation was performed to increase the number of images. The finally obtained dataset was then subjected to minimal preprocessing procedures. These preprocessed images were then fed into the proposed lightweight CholangioNet. The performance of this proposed architecture is then compared with the performance of some of the prominent existing architectures like, VGG16, VGG19, ResNet50 and ResNet101. The Accuracy, Loss, Precision, and Sensitivity metrics are used to assess the efficiency of the proposed system. At 200 epochs, the proposed architecture achieves maximum training accuracy, precision, and recall of 99.90%, 100%, and 100%, respectively. The suggested architecture's validation accuracy, precision, and recall are 98.40%, 100%, and 100%, respectively. When compared to the performance of other AI-based models, the proposed system produced better results making it a potential AI tool for real world application.
Collapse
Affiliation(s)
- Shubhadip Chakrabarti
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, Tamil Nadu, 600127, India
| | - Ummity Srinivasa Rao
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, Tamil Nadu, 600127, India.
| |
Collapse
|
13
|
Fujioka T, Kubota K, Hsu JF, Chang RF, Sawada T, Ide Y, Taruno K, Hankyo M, Kurita T, Nakamura S, Tateishi U, Takei H. Examining the effectiveness of a deep learning-based computer-aided breast cancer detection system for breast ultrasound. J Med Ultrason (2001) 2023; 50:511-520. [PMID: 37400724 PMCID: PMC10556122 DOI: 10.1007/s10396-023-01332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE This study aimed to evaluate the clinical usefulness of a deep learning-based computer-aided detection (CADe) system for breast ultrasound. METHODS The set of 88 training images was expanded to 14,000 positive images and 50,000 negative images. The CADe system was trained to detect lesions in real- time using deep learning with an improved model of YOLOv3-tiny. Eighteen readers evaluated 52 test image sets with and without CADe. Jackknife alternative free-response receiver operating characteristic analysis was used to estimate the effectiveness of this system in improving lesion detection. RESULT The area under the curve (AUC) for image sets was 0.7726 with CADe and 0.6304 without CADe, with a 0.1422 difference, indicating that with CADe was significantly higher than that without CADe (p < 0.0001). The sensitivity per case was higher with CADe (95.4%) than without CADe (83.7%). The specificity of suspected breast cancer cases with CADe (86.6%) was higher than that without CADe (65.7%). The number of false positives per case (FPC) was lower with CADe (0.22) than without CADe (0.43). CONCLUSION The use of a deep learning-based CADe system for breast ultrasound by readers significantly improved their reading ability. This system is expected to contribute to highly accurate breast cancer screening and diagnosis.
Collapse
Affiliation(s)
- Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazunori Kubota
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama, 343-8555, Japan.
| | - Jen Feng Hsu
- Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, ROC
| | - Ruey Feng Chang
- Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan, ROC
| | - Terumasa Sawada
- Department of Breast Surgery, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo, 141-8625, Japan
- Department of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yoshimi Ide
- Department of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
- Department of Breast Oncology, Kikuna Memorial Hospital, 4-4-27 Kikuna, Kohoku-ku, Yokohama, 222-0011, Japan
| | - Kanae Taruno
- Department of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Meishi Hankyo
- Department of Breast Surgical Oncology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Tomoko Kurita
- Department of Breast Surgical Oncology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Seigo Nakamura
- Department of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Takei
- Department of Breast Surgical Oncology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
14
|
Fujima N, Kamagata K, Ueda D, Fujita S, Fushimi Y, Yanagawa M, Ito R, Tsuboyama T, Kawamura M, Nakaura T, Yamada A, Nozaki T, Fujioka T, Matsui Y, Hirata K, Tatsugami F, Naganawa S. Current State of Artificial Intelligence in Clinical Applications for Head and Neck MR Imaging. Magn Reson Med Sci 2023; 22:401-414. [PMID: 37532584 PMCID: PMC10552661 DOI: 10.2463/mrms.rev.2023-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023] Open
Abstract
Due primarily to the excellent soft tissue contrast depictions provided by MRI, the widespread application of head and neck MRI in clinical practice serves to assess various diseases. Artificial intelligence (AI)-based methodologies, particularly deep learning analyses using convolutional neural networks, have recently gained global recognition and have been extensively investigated in clinical research for their applicability across a range of categories within medical imaging, including head and neck MRI. Analytical approaches using AI have shown potential for addressing the clinical limitations associated with head and neck MRI. In this review, we focus primarily on the technical advancements in deep-learning-based methodologies and their clinical utility within the field of head and neck MRI, encompassing aspects such as image acquisition and reconstruction, lesion segmentation, disease classification and diagnosis, and prognostic prediction for patients presenting with head and neck diseases. We then discuss the limitations of current deep-learning-based approaches and offer insights regarding future challenges in this field.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Kumamoto, Kumamoto, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
15
|
Yanagawa M, Ito R, Nozaki T, Fujioka T, Yamada A, Fujita S, Kamagata K, Fushimi Y, Tsuboyama T, Matsui Y, Tatsugami F, Kawamura M, Ueda D, Fujima N, Nakaura T, Hirata K, Naganawa S. New trend in artificial intelligence-based assistive technology for thoracic imaging. LA RADIOLOGIA MEDICA 2023; 128:1236-1249. [PMID: 37639191 PMCID: PMC10547663 DOI: 10.1007/s11547-023-01691-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Although there is no solid agreement for artificial intelligence (AI), it refers to a computer system with intelligence similar to that of humans. Deep learning appeared in 2006, and more than 10 years have passed since the third AI boom was triggered by improvements in computing power, algorithm development, and the use of big data. In recent years, the application and development of AI technology in the medical field have intensified internationally. There is no doubt that AI will be used in clinical practice to assist in diagnostic imaging in the future. In qualitative diagnosis, it is desirable to develop an explainable AI that at least represents the basis of the diagnostic process. However, it must be kept in mind that AI is a physician-assistant system, and the final decision should be made by the physician while understanding the limitations of AI. The aim of this article is to review the application of AI technology in diagnostic imaging from PubMed database while particularly focusing on diagnostic imaging in thorax such as lesion detection and qualitative diagnosis in order to help radiologists and clinicians to become more familiar with AI in thorax.
Collapse
Affiliation(s)
- Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-City, Osaka, 565-0871, Japan.
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-2621, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N15, W5, Kita-ku, Sapporo, 060-8638, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15 Nish I 7, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
16
|
Huang JL, Sun Y, Wu ZH, Zhu HJ, Xia GJ, Zhu XS, Wu JH, Zhang KH. Differential diagnosis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on spatial and channel attention mechanisms. J Cancer Res Clin Oncol 2023; 149:10161-10168. [PMID: 37268850 DOI: 10.1007/s00432-023-04935-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND The pre-operative non-invasive differential diagnosis of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) mainly depends on imaging. However, the accuracy of conventional imaging and radiomics methods in differentiating between the two carcinomas is unsatisfactory. In this study, we aimed to establish a novel deep learning model based on computed tomography (CT) images to provide an effective and non-invasive pre-operative differential diagnosis method for HCC and ICC. MATERIALS AND METHODS We retrospectively investigated the CT images of 395 HCC patients and 99 ICC patients who were diagnosed based on pathological analysis. To differentiate between HCC and ICC we developed a deep learning model called CSAM-Net based on channel and spatial attention mechanisms. We compared the proposed CSAM-Net with conventional radiomic models such as conventional logistic regression, least absolute shrinkage and selection operator regression, support vector machine, and random forest models. RESULTS With respect to differentiating between HCC and ICC, the CSAM-Net model showed area under the receiver operating characteristic curve (AUC) values of 0.987 (accuracy = 0.939), 0.969 (accuracy = 0.914), and 0.959 (accuracy = 0.912) for the training, validation, and test sets, respectively, which were significantly higher than those of the conventional radiomics models (0.736-0.913 [accuracy = 0.735-0.912], 0.602-0.828 [accuracy = 0.647-0.818], and 0.638-0.845 [accuracy = 0.618-0.849], respectively. The decision curve analysis showed a high net benefit of the CSAM-Net model, which suggests potential efficacy in differentiating between HCC and ICC in the diagnosis of liver cancers. CONCLUSIONS The proposed CSAM-Net model based on channel and spatial attention mechanisms provides an effective and non-invasive tool for the differential diagnosis of HCC and ICC on CT images, and has potential applications in diagnosis of liver cancers.
Collapse
Affiliation(s)
- Ji-Lan Huang
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Ying Sun
- Department of Gastroenterology, Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, 350004, China
| | - Zhi-Heng Wu
- School of Information Engineering, Nanchang University, No.999, Xuefu Road, Nanchang, 330031, China
| | - Hui-Jun Zhu
- School of Information Engineering, Nanchang University, No.999, Xuefu Road, Nanchang, 330031, China
| | - Guo-Jin Xia
- Department of Radiology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xi-Shun Zhu
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031, China
| | - Jian-Hua Wu
- School of Information Engineering, Nanchang University, No.999, Xuefu Road, Nanchang, 330031, China.
| | - Kun-He Zhang
- Department of Gastroenterology, Jiangxi Institute of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Nanchang, 330006, China.
| |
Collapse
|
17
|
Yamada A, Kamagata K, Hirata K, Ito R, Nakaura T, Ueda D, Fujita S, Fushimi Y, Fujima N, Matsui Y, Tatsugami F, Nozaki T, Fujioka T, Yanagawa M, Tsuboyama T, Kawamura M, Naganawa S. Clinical applications of artificial intelligence in liver imaging. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01638-1. [PMID: 37165151 DOI: 10.1007/s11547-023-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
This review outlines the current status and challenges of the clinical applications of artificial intelligence in liver imaging using computed tomography or magnetic resonance imaging based on a topic analysis of PubMed search results using latent Dirichlet allocation. LDA revealed that "segmentation," "hepatocellular carcinoma and radiomics," "metastasis," "fibrosis," and "reconstruction" were current main topic keywords. Automatic liver segmentation technology using deep learning is beginning to assume new clinical significance as part of whole-body composition analysis. It has also been applied to the screening of large populations and the acquisition of training data for machine learning models and has resulted in the development of imaging biomarkers that have a significant impact on important clinical issues, such as the estimation of liver fibrosis, recurrence, and prognosis of malignant tumors. Deep learning reconstruction is expanding as a new technological clinical application of artificial intelligence and has shown results in reducing contrast and radiation doses. However, there is much missing evidence, such as external validation of machine learning models and the evaluation of the diagnostic performance of specific diseases using deep learning reconstruction, suggesting that the clinical application of these technologies is still in development.
Collapse
Affiliation(s)
- Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-Ku, Kumamoto, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-Ku, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-Ku, Okayama, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-Ku, Hiroshima City, Hiroshima, Japan
| | - Taiki Nozaki
- Department of Radiology, St. Luke's International Hospital, Tokyo, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
18
|
Brunese MC, Fantozzi MR, Fusco R, De Muzio F, Gabelloni M, Danti G, Borgheresi A, Palumbo P, Bruno F, Gandolfo N, Giovagnoni A, Miele V, Barile A, Granata V. Update on the Applications of Radiomics in Diagnosis, Staging, and Recurrence of Intrahepatic Cholangiocarcinoma. Diagnostics (Basel) 2023; 13:diagnostics13081488. [PMID: 37189589 DOI: 10.3390/diagnostics13081488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND This paper offers an assessment of radiomics tools in the evaluation of intrahepatic cholangiocarcinoma. METHODS The PubMed database was searched for papers published in the English language no earlier than October 2022. RESULTS We found 236 studies, and 37 satisfied our research criteria. Several studies addressed multidisciplinary topics, especially diagnosis, prognosis, response to therapy, and prediction of staging (TNM) or pathomorphological patterns. In this review, we have covered diagnostic tools developed through machine learning, deep learning, and neural network for the recurrence and prediction of biological characteristics. The majority of the studies were retrospective. CONCLUSIONS It is possible to conclude that many performing models have been developed to make differential diagnosis easier for radiologists to predict recurrence and genomic patterns. However, all the studies were retrospective, lacking further external validation in prospective and multicentric cohorts. Furthermore, the radiomics models and the expression of results should be standardized and automatized to be applicable in clinical practice.
Collapse
Affiliation(s)
- Maria Chiara Brunese
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | | | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria delle Marche", 60121 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L'Aquila, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L'Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, 16149 Genoa, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria delle Marche", 60121 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
19
|
Cannella R, Vernuccio F, Klontzas ME, Ponsiglione A, Petrash E, Ugga L, Pinto dos Santos D, Cuocolo R. Systematic review with radiomics quality score of cholangiocarcinoma: an EuSoMII Radiomics Auditing Group Initiative. Insights Imaging 2023; 14:21. [PMID: 36720726 PMCID: PMC9889586 DOI: 10.1186/s13244-023-01365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/24/2022] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES To systematically review current research applications of radiomics in patients with cholangiocarcinoma and to assess the quality of CT and MRI radiomics studies. METHODS A systematic search was conducted on PubMed/Medline, Web of Science, and Scopus databases to identify original studies assessing radiomics of cholangiocarcinoma on CT and/or MRI. Three readers with different experience levels independently assessed quality of the studies using the radiomics quality score (RQS). Subgroup analyses were performed according to journal type, year of publication, quartile and impact factor (from the Journal Citation Report database), type of cholangiocarcinoma, imaging modality, and number of patients. RESULTS A total of 38 original studies including 6242 patients (median 134 patients) were selected. The median RQS was 9 (corresponding to 25.0% of the total RQS; IQR 1-13) for reader 1, 8 (22.2%, IQR 3-12) for reader 2, and 10 (27.8%; IQR 5-14) for reader 3. The inter-reader agreement was good with an ICC of 0.75 (95% CI 0.62-0.85) for the total RQS. All studies were retrospective and none of them had phantom assessment, imaging at multiple time points, nor performed cost-effectiveness analysis. The RQS was significantly higher in studies published in journals with impact factor > 4 (median 11 vs. 4, p = 0.048 for reader 1) and including more than 100 patients (median 11.5 vs. 0.5, p < 0.001 for reader 1). CONCLUSIONS Quality of radiomics studies on cholangiocarcinoma is insufficient based on the radiomics quality score. Future research should consider prospective studies with a standardized methodology, validation in multi-institutional external cohorts, and open science data.
Collapse
Affiliation(s)
- Roberto Cannella
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy ,grid.10776.370000 0004 1762 5517Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy
| | - Federica Vernuccio
- grid.411474.30000 0004 1760 2630Department of Radiology, University Hospital of Padova, Via Nicolò Giustiniani 2, 35128 Padua, Italy
| | - Michail E. Klontzas
- grid.412481.a0000 0004 0576 5678Department of Medical Imaging, University Hospital of Heraklion, 71110 Voutes, Crete, Greece ,grid.8127.c0000 0004 0576 3437Department of Radiology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece ,grid.4834.b0000 0004 0635 685XComputational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology, Vassilika Vouton, 70013 Crete, Greece
| | - Andrea Ponsiglione
- grid.4691.a0000 0001 0790 385XDepartment of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Ekaterina Petrash
- grid.415738.c0000 0000 9216 2496Radiology Department Research Institute of Children’s Oncology and Hematology, FSBI “National Medical Research Center of Oncology n.a. N.N. Blokhin” of Ministry of Health of RF, Kashirskoye Highway 24, Moscow, Russia ,IRA-Labs, Medical Department, Skolkovo, Bolshoi Boulevard, 30, Building 1, Moscow, Russia
| | - Lorenzo Ugga
- grid.4691.a0000 0001 0790 385XDepartment of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Daniel Pinto dos Santos
- grid.6190.e0000 0000 8580 3777Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany ,grid.411088.40000 0004 0578 8220Department of Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Renato Cuocolo
- grid.11780.3f0000 0004 1937 0335Department of Medicine, Surgery, and Dentistry, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, SA Italy ,grid.4691.a0000 0001 0790 385XAugmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
20
|
Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. Dig Liver Dis 2023:S1590-8658(22)00863-5. [PMID: 36641292 DOI: 10.1016/j.dld.2022.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/16/2023]
Abstract
The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.
Collapse
Affiliation(s)
- Jingwei Wei
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China
| | - Yu Zhou
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; School of Life Science and Technology, Xidian University, Xi'an, PR. China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, PR. China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, PR. China.
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States.
| |
Collapse
|
21
|
Chen P, Yang Z, Zhang H, Huang G, Li Q, Ning P, Yu H. Personalized intrahepatic cholangiocarcinoma prognosis prediction using radiomics: Application and development trend. Front Oncol 2023; 13:1133867. [PMID: 37035147 PMCID: PMC10076873 DOI: 10.3389/fonc.2023.1133867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Radiomics was proposed by Lambin et al. in 2012 and since then there has been an explosion of related research. There has been significant interest in developing high-throughput methods that can automatically extract a large number of quantitative image features from medical images for better diagnostic or predictive performance. There have also been numerous radiomics investigations on intrahepatic cholangiocarcinoma in recent years, but no pertinent review materials are readily available. This work discusses the modeling analysis of radiomics for the prediction of lymph node metastasis, microvascular invasion, and early recurrence of intrahepatic cholangiocarcinoma, as well as the use of deep learning. This paper briefly reviews the current status of radiomics research to provide a reference for future studies.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhenwei Yang
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Haofeng Zhang
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Guan Huang
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Peigang Ning
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Haibo Yu,
| |
Collapse
|
22
|
Fujioka T, Satoh Y, Imokawa T, Mori M, Yamaga E, Takahashi K, Kubota K, Onishi H, Tateishi U. Proposal to Improve the Image Quality of Short-Acquisition Time-Dedicated Breast Positron Emission Tomography Using the Pix2pix Generative Adversarial Network. Diagnostics (Basel) 2022; 12:diagnostics12123114. [PMID: 36553120 PMCID: PMC9777139 DOI: 10.3390/diagnostics12123114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the ability of the pix2pix generative adversarial network (GAN) to improve the image quality of low-count dedicated breast positron emission tomography (dbPET). Pairs of full- and low-count dbPET images were collected from 49 breasts. An image synthesis model was constructed using pix2pix GAN for each acquisition time with training (3776 pairs from 16 breasts) and validation data (1652 pairs from 7 breasts). Test data included dbPET images synthesized by our model from 26 breasts with short acquisition times. Two breast radiologists visually compared the overall image quality of the original and synthesized images derived from the short-acquisition time data (scores of 1−5). Further quantitative evaluation was performed using a peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the visual evaluation, both readers revealed an average score of >3 for all images. The quantitative evaluation revealed significantly higher SSIM (p < 0.01) and PSNR (p < 0.01) for 26 s synthetic images and higher PSNR for 52 s images (p < 0.01) than for the original images. Our model improved the quality of low-count time dbPET synthetic images, with a more significant effect on images with lower counts.
Collapse
Affiliation(s)
- Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoko Satoh
- Yamanashi PET Imaging Clinic, Chuo City 409-3821, Japan
- Department of Radiology, University of Yamanashi, Chuo City 409-3898, Japan
- Correspondence:
| | - Tomoki Imokawa
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Mio Mori
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Emi Yamaga
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kanae Takahashi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kazunori Kubota
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, Koshigaya 343-8555, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, Chuo City 409-3898, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
23
|
Sabitha P, Meeragandhi G. A dual stage AlexNet-HHO-DrpXLM archetype for an effective feature extraction, classification and prediction of liver cancer based on histopathology images. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Haghbin H, Aziz M. Artificial intelligence and cholangiocarcinoma: Updates and prospects. World J Clin Oncol 2022; 13:125-134. [PMID: 35316928 PMCID: PMC8894273 DOI: 10.5306/wjco.v13.i2.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is the timeliest field of computer science and attempts to mimic cognitive function of humans to solve problems. In the era of “Big data”, there is an ever-increasing need for AI in all aspects of medicine. Cholangiocarcinoma (CCA) is the second most common primary malignancy of liver that has shown an increase in incidence in the last years. CCA has high mortality as it is diagnosed in later stages that decreases effect of surgery, chemotherapy, and other modalities. With technological advancement there is an immense amount of clinicopathologic, genetic, serologic, histologic, and radiologic data that can be assimilated together by modern AI tools for diagnosis, treatment, and prognosis of CCA. The literature shows that in almost all cases AI models have the capacity to increase accuracy in diagnosis, treatment, and prognosis of CCA. Most studies however are retrospective, and one study failed to show AI benefit in practice. There is immense potential for AI in diagnosis, treatment, and prognosis of CCA however limitations such as relative lack of studies in use by human operators in improvement of survival remains to be seen.
Collapse
Affiliation(s)
- Hossein Haghbin
- Department of Gastroenterology, Ascension Providence Southfield, Southfield, MI 48075, United States
| | - Muhammad Aziz
- Department of Gastroenterology, University of Toledo Medical Center, Toledo, OH 43614, United States
| |
Collapse
|
25
|
Wang S, Liu X, Zhao J, Liu Y, Liu S, Liu Y, Zhao J. Computer auxiliary diagnosis technique of detecting cholangiocarcinoma based on medical imaging: A review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106265. [PMID: 34311415 DOI: 10.1016/j.cmpb.2021.106265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Cholangiocarcinoma (CCA) is one of the most aggressive human malignant tumors and is becoming one of the main factors of death and disability globally. Specifically, 60% to 70% of CCA patients were diagnosed with local invasion or distant metastasis and lost the chance of radical operation. The overall median survival time was less than 12 months. As a non-invasive diagnostic technology, medical imaging consisting of computed tomography (CT) imaging, magnetic resonance imaging (MRI), and ultrasound (US) imaging, is the most effectively and commonly used method to detect CCA. The computer auxiliary diagnosis (CAD) system based on medical imaging is helpful for rapid diagnosis and provides credible "second opinion" for specialists. The purpose of this review is to categorize and review the CAD technique of detecting CCA based on medical imaging. METHODS This work applies a four-level screening process to choose suitable publications. 125 research papers published in different academic research databases were selected and analyzed according to specific criteria. From the five steps of medical image acquisition, processing, analysis, understanding and verification of CAD combined with artificial intelligence algorithms, we obtain the most advanced insights related to CCA detection. RESULTS This work provides a comprehensive analysis and comparison analysis of the current CAD systems of detecting CCA. After careful investigation, we find that the main detection methods are traditional machine learning method and deep learning method. For the detection, the most commonly used method is semi-automatic segmentation algorithm combined with support vector machine classifier method, combination of which has good detection performance. The end-to-end training mode makes deep learning method more and more popular in CAD systems. However, due to the limited medical training data, the accuracy of deep learning method is unsatisfactory. CONCLUSIONS Based on analysis of artificial intelligence methods applied in CCA, this work is expected to be truly applied in clinical practice in the future to improve the level of clinical diagnosis and treatment of it. This work concludes by providing a prediction of future trends, which will be of great significance for researchers in the medical imaging of CCA and artificial intelligence.
Collapse
Affiliation(s)
- Shiyu Wang
- School of Electronic and Electric Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiang Liu
- School of Electronic and Electric Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingwen Zhao
- School of Electronic and Electric Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yiwen Liu
- School of Electronic and Electric Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Yisi Liu
- Department of Pathology and Hepatology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|