1
|
Kawamura M, Shimojo M, Tatsugami F, Hirata K, Fujita S, Ueda D, Matsui Y, Fushimi Y, Fujioka T, Nozaki T, Yamada A, Ito R, Fujima N, Yanagawa M, Nakaura T, Tsuboyama T, Kamagata K, Naganawa S. Stereotactic arrhythmia radioablation for ventricular tachycardia: a review of clinical trials and emerging roles of imaging. JOURNAL OF RADIATION RESEARCH 2025; 66:1-9. [PMID: 39656944 PMCID: PMC11753837 DOI: 10.1093/jrr/rrae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Indexed: 12/17/2024]
Abstract
Ventricular tachycardia (VT) is a severe arrhythmia commonly treated with implantable cardioverter defibrillators, antiarrhythmic drugs and catheter ablation (CA). Although CA is effective in reducing recurrent VT, its impact on survival remains uncertain, especially in patients with extensive scarring. Stereotactic arrhythmia radioablation (STAR) has emerged as a novel treatment for VT in patients unresponsive to CA, leveraging techniques from stereotactic body radiation therapy used in cancer treatments. Recent clinical trials and case series have demonstrated the short-term efficacy and safety of STAR, although long-term outcomes remain unclear. Imaging techniques, such as electroanatomical mapping, contrast-enhanced magnetic resonance imaging and nuclear imaging, play a crucial role in treatment planning by identifying VT substrates and guiding target delineation. However, challenges persist owing to the complex anatomy and variability in target volume definitions. Advances in imaging and artificial intelligence are expected to improve the precision and efficacy of STAR. The exact mechanisms underlying the antiarrhythmic effects of STAR, including potential fibrosis and improvement in cardiac conduction, are still being explored. Despite its potential, STAR should be cautiously applied in prospective clinical trials, with a focus on optimizing dose delivery and understanding long-term outcomes. Collaborative efforts are necessary to standardize treatment strategies and enhance the quality of life for patients with refractory VT.
Collapse
Affiliation(s)
- Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masafumi Shimojo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho,Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
2
|
Yamada T, Kawamura M, Oie Y, Kozai Y, Okumura M, Nagai N, Yanagi Y, Nimura K, Ishihara S, Naganawa S. The current state and future perspectives of radiotherapy for cervical cancer. J Obstet Gynaecol Res 2024; 50 Suppl 1:84-94. [PMID: 38885951 DOI: 10.1111/jog.15998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Radiotherapy is an effective treatment method for cervical cancer and is typically administered as external beam radiotherapy followed by intracavitary brachytherapy. In Japan, center shielding is used in external beam radiotherapy to shorten treatment time and reduce the doses delivered to the rectum or bladder. However, it has several challenges, such as uncertainties in calculating the cumulative dose. Recently, external beam radiotherapy has been increasingly performed with intensity-modulated radiotherapy, which reduces doses to the rectum or bladder without center shielding. In highly conformal radiotherapy, uncertainties in treatment delivery, such as inter-fractional anatomical structure movements, affect treatment outcomes; therefore, image-guided radiotherapy is essential for appropriate and safe performance. Regarding intracavitary brachytherapy, the use of magnetic resonance imaging-based image-guided adaptive brachytherapy is becoming increasingly widespread because it allows dose escalation to the tumor and accurately evaluates the dose delivered to the surrounding normal organs. According to current evidence, a minimal dose of D90% of the high-risk clinical target volume is significantly relevant to local control. Further improvements in target coverage have been achieved with combined interstitial and intracavity brachytherapy for massive tumors with extensive parametrical involvement. Introducing artificial intelligence will enable faster and more accurate generation of brachytherapy plans. Charged-particle therapies have biological and dosimetric advantages, and current evidence has proven their effectiveness and safety in cervical cancer treatment. Recently, radiotherapy-related technologies have advanced dramatically. This review provides an overview of technological innovations and future perspectives in radiotherapy for cervical cancer.
Collapse
Affiliation(s)
- Takehiro Yamada
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumi Oie
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Kozai
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masayuki Okumura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Nagai
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yanagi
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Radiology, Toyota Memorial Hospital, Toyota, Japan
| | - Kenta Nimura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Radiology, Tosei General Hospital, Seto, Japan
| | - Shunichi Ishihara
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Veres MR, Sharifzadeh Y, Kavanaugh JA, Park S, Malkov V. Adaptive-Driven CT Simulation-Free Soft Tissue Stereotactic Body Radiation Therapy: A Single-Patient Case Report. Cureus 2024; 16:e66876. [PMID: 39280393 PMCID: PMC11398844 DOI: 10.7759/cureus.66876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Online adaptive radiotherapy (ART) enables accommodation for variations in patient setup and anatomical changes, allowing for fractional replanning for target coverage, organ at risk (OAR) sparing, and application of CT simulation-free (SF) workflows. SF workflows bypass the conventional simulation CT scan at the potential trade-off in dosimetric uncertainty. ART can alleviate many of these uncertainties, and this work extends previous experience with an Ethos adaptive cone-beam computed tomography (CBCT)-based SF process to treating a unique bony and soft tissue case with stereotactic body radiation therapy (SBRT). The patient is an 83-year-old male with metastatic prostate cancer, presenting with metastases near the right posterior ischium and a right perirectal lymph node. The patient's history includes multiple radiation treatments and androgen deprivation therapy (ADT). Rising prostate-specific antigen(PSA) levels and new metastases identified via positron emission tomography (PET)/CT prostate-specific membrane antigen (PSMA) led to SBRT re-irradiation, considered safe due to the time lapse since previous treatments. Using a HyperSight-equipped Ethos ART system, an SF SBRT workflow utilized the patient's recent PET/CT images for target and OAR delineation. A nine-field adaptive intensity-modulated radiotherapy(IMRT) treatment plan was generated to deliver 3600 Gy in three fractions with a primary focus to limit the dose to proximal OARs and the previously treated region. At the adaptive treatment, the patient is positioned based on anatomical marks, and axial images from HyperSight CBCT are used to contour the OARs and targets. These modified contours accommodate daily variations and are used to recalculate the reference plan and generate a new adapted plan. The adapted plan is selected if coverage improvement and OAR sparing are achieved. For each newly adapted plan, Ethos-generated synthetic CT is reviewed prior to treatment to verify no errors occurred in the deformable propagation between the reference image and the fractional CBCT. For this patient, the adapted plan was selected for all fractions due to improved target coverage, particularly of the soft tissue target, and OAR sparing. The patient tolerated the treatment well and demonstrated a good response on three-month follow-up PSMA PET/CT imaging. This case highlights the efficacy of CBCT-driven SF ART in complex re-irradiation scenario. Future enhancements in the Ethos treatment planning system, including direct dose computation on HyperSight CBCT images, will streamline SF workflows and expand their applicability. Careful consideration of potential on-unit OAR changes and target motion remains crucial for successful SF ART applications.
Collapse
Affiliation(s)
| | | | | | - Sean Park
- Radiation Oncology, Mayo Clinic, Rochester, USA
| | | |
Collapse
|
4
|
Ito M, Abe S, Adachi S, Oshima Y, Takeuchi A, Ohashi W, Iwata T, Ogawa T, Ota A, Kubota Y, Okuda T, Suzuki K. Solid tumours showing oligoprogression to immune checkpoint inhibitors have the potential for abscopal effects. Jpn J Radiol 2024; 42:424-434. [PMID: 38093137 PMCID: PMC10980609 DOI: 10.1007/s11604-023-01516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 04/01/2024]
Abstract
PURPOSE Given the uncertainty surrounding the abscopal effect (AE), it is imperative to identify promising treatment targets. In this study, we aimed to explore the incidence of AE when administering radiotherapy to patients with oligoprogressive solid tumours while they are undergoing treatment with immune checkpoint inhibitors (ICIs). MATERIALS AND METHODS In this multicentre prospective observational study, oligoprogressive disease was defined as a < 20% increase in lesions compared to > 2 months before enrolment. We enrolled patients who requested radiotherapy during the ICI rest period between 2020 and 2023. AE was considered present if ≥ 1 non-irradiated lesion decreased by ≥ 30% before the next line of systemic therapy started. RESULTS Twelve patients were included in this study; the common primary lesions were in the lungs (four patients) and kidneys (three patients). AEs were observed in six (50%) patients, with a median time to onset of 4 (range 2-9) months after radiotherapy. No significant predictors of AEs were identified. Patients in the AE group had a significantly better 1-year progression-free survival (PFS) rate than those in the non-AE group (p = 0.008). Two patients from the AE group were untreated and progression-free at the last follow-up. Four (33%) patients experienced grade 2 toxicity, with two cases attributed to radiotherapy and the other two to ICI treatment. No grade 3 or higher toxicities were observed in any category. CONCLUSION Patients with oligoprogressive disease may be promising targets with potential for AEs. AEs can lead to improved PFS and, in rare cases, to a certain progression-free period without treatment. Irradiating solid tumours in patients with oligoprogressive disease during immune checkpoint inhibitor therapy may be a promising target with the potential for abscopal effects (AEs). AEs can lead to improved progression-free survival and, in rare cases, to a certain progression-free period without treatment.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan.
| | - Souichiro Abe
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Sou Adachi
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Yukihiko Oshima
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Arisa Takeuchi
- Department of Radiation Oncology, Anjo Kosei Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, 28 Higashihirokute, Anjo-Cho, Anjo, Aichi, 446-8602, Japan
| | - Wataru Ohashi
- Department of Biostatistics, Clinical Research Center, Aichi Medical University, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Takashi Iwata
- Department of Oncology Center, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Tetsuya Ogawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Akiko Ota
- Department of Oncology, Toyota Memorial Hospital, 1-1-1 Heiwa-Cho, Toyota, Aichi, 471-8513, Japan
| | - Yasuaki Kubota
- Department of Urology, Toyota Memorial Hospital, 1-1-1 Heiwa-Cho, Toyota, Aichi, 471-8513, Japan
| | - Takahito Okuda
- Department of Radiation Oncology, Toyota Memorial Hospital, 1-1-1 Heiwa-Cho, Toyota, Aichi, 471-8513, Japan
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University Hospital, 1-1 Yazako-Karimata, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
5
|
Kawamura M, Kamomae T, Yanagawa M, Kamagata K, Fujita S, Ueda D, Matsui Y, Fushimi Y, Fujioka T, Nozaki T, Yamada A, Hirata K, Ito R, Fujima N, Tatsugami F, Nakaura T, Tsuboyama T, Naganawa S. Revolutionizing radiation therapy: the role of AI in clinical practice. JOURNAL OF RADIATION RESEARCH 2024; 65:1-9. [PMID: 37996085 PMCID: PMC10803173 DOI: 10.1093/jrr/rrad090] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
This review provides an overview of the application of artificial intelligence (AI) in radiation therapy (RT) from a radiation oncologist's perspective. Over the years, advances in diagnostic imaging have significantly improved the efficiency and effectiveness of radiotherapy. The introduction of AI has further optimized the segmentation of tumors and organs at risk, thereby saving considerable time for radiation oncologists. AI has also been utilized in treatment planning and optimization, reducing the planning time from several days to minutes or even seconds. Knowledge-based treatment planning and deep learning techniques have been employed to produce treatment plans comparable to those generated by humans. Additionally, AI has potential applications in quality control and assurance of treatment plans, optimization of image-guided RT and monitoring of mobile tumors during treatment. Prognostic evaluation and prediction using AI have been increasingly explored, with radiomics being a prominent area of research. The future of AI in radiation oncology offers the potential to establish treatment standardization by minimizing inter-observer differences in segmentation and improving dose adequacy evaluation. RT standardization through AI may have global implications, providing world-standard treatment even in resource-limited settings. However, there are challenges in accumulating big data, including patient background information and correlating treatment plans with disease outcomes. Although challenges remain, ongoing research and the integration of AI technology hold promise for further advancements in radiation oncology.
Collapse
Affiliation(s)
- Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Takeshi Kamomae
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
6
|
Haisraely O, Jaffe ML, Lawrence Y. The Importance of Radiation Planning Guidelines in Spinal Stereotactic Body Radiotherapy. Case Rep Oncol 2024; 17:646-652. [PMID: 38988697 PMCID: PMC11236383 DOI: 10.1159/000538770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Stereotactic body radiotherapy (SBRT) is a well-established treatment for spinal metastases. Official guidelines for radiation planning were published and revised by several groups. Here, we present real-world data about the importance of adhering to those guidelines. Case Report A 42-year-old metastatic colon cancer patient presented with oligometastatic disease to L3 vertebra and underwent SBRT treatment. Due to lack of adhering to official guidelines both in dose regiment and in volume definition, he progressed locally and required re-treatment. Conclusions SBRT is a well-known established choice for oligometastatic spinal lesions. Thorough evaluation of imaging and adherence to clinical guidelines are crucial for achieving a high local control rate and reducing the likelihood of re-irradiation and associated complications.
Collapse
Affiliation(s)
- Ory Haisraely
- Sheba Medical Center, Tel, Aviv University, Tel-Aviv, Israel
| | - Marcia L Jaffe
- Sheba Medical Center, Tel, Aviv University, Tel-Aviv, Israel
| | - Yaacov Lawrence
- Sheba Medical Center, Tel, Aviv University, Tel-Aviv, Israel
| |
Collapse
|
7
|
Ohira S, Ikawa T, Inui S, Kanayama N, Ueda Y, Miyazaki M, Nishio T, Koizumi M, Konishi K. Improvement of target coverage using automated non-coplanar volumetric modulated arc therapy planning in stereotactic radiotherapy for cervical metastatic spinal tumors. Med Dosim 2023:S0958-3947(23)00039-0. [PMID: 37202230 DOI: 10.1016/j.meddos.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 05/20/2023]
Abstract
This study aimed to compare dosimetric parameters for targets and organs at risk (OARs) between volumetric modulated arc therapy (VMAT) and automated VMAT (HyperArc, HA) plans in stereotactic radiotherapy for patients with cervical metastatic spine tumors. VMAT plans were generated for 11 metastases using the simultaneous integrated boost technique to deliver 35 to 40 and 20 to 25 Gy for high dose and elective dose planning target volume (PTVHD and PTVED), respectively. The HA plans were retrospectively generated using 1 coplanar and 2 noncoplanar arcs. Subsequently, the doses to the targets and OARs were compared. The HA plans provided significantly higher (p < 0.05) Dmin (77.4 ± 13.1%), D99% (89.3 ± 8.9%), and D98% (92.5 ± 7.7%) for gross tumor volume (GTV) than those of the VMAT plans (73.4 ± 12.2%, 84.2 ± 9.6 and 87.3 ± 8.8% for Dmin, D99% and D98%, respectively). In addition, D99% and D98% for PTVHD were significantly higher in the HA plans, whereas dosimetric parameters were comparable between the HA and VMAT plans for PTVED. The Dmax values for the brachial plexus, esophagus, and spinal cord were comparable, and no significant difference was observed in the Dmean for the larynx, pharyngeal constrictor, thyroid, parotid grand (left and right), and Submandibular gland (left and right). The HA plans provided significantly higher target coverage of GTV and PTVHD, with a comparable dose for OARs with VMAT plans. The results of this study may contribute to the improvement of local control in clinical practice.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Toshiki Ikawa
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
8
|
Iramina H, Nakamura M, Nakamura K, Fujimoto T, Mizowaki T. Quantification of six-degree-of-freedom motion during beam delivery in spine stereotactic body radiotherapy using intra-irradiation cone-beam computed tomography imaging technique. Phys Med 2023; 110:102605. [PMID: 37167776 DOI: 10.1016/j.ejmp.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
PURPOSE Quantifying intra-fractional six-degree-of-freedom (6DoF) residual errors or motion from approved patient setups is necessary for accurate beam delivery in spine stereotactic body radiotherapy. However, previously reported errors were not acquired during beam delivery. Therefore, we aimed to quantify the 6DoF residual errors and motions during arc beam delivery using a concurrent cone-beam computed tomography (CBCT) imaging technique, intra-irradiation CBCT. METHODS Consecutive 15 patients, 19 plans for various treatment sites, and 199 CBCT images were analyzed. Pre-irradiation CBCT was performed to verify shifts from the initial patient setup using the ExacTrac system. During beam delivery by two or three co-planar full-arc rotations, CBCT imaging was performed concurrently. Subsequently, an intra-irradiation CBCT image was reconstructed. Pre- and intra-irradiation CBCT images were rigidly registered to a planning CT image based on the bone to quantify 6DoF residual errors. RESULTS 6DoF residual errors quantified using pre- and intra-irradiation CBCTs were within 2.0 mm/2.0°, except for one measurement. The mean elapsed time (mean ± standard deviation [min:sec]) after pre-irradiation CBCT to the end of the last arc beam delivery was 6:08 ± 1:25 and 7:54 ± 2:14 for the 2- and 3-arc plans, respectively. Root mean squares of residual errors for several directions showed significant differences; however, they were within 1.0 mm/1.0°. Time-dependent analysis revealed that the residual errors tended to increase with elapsed time. CONCLUSION The errors represent the optimal intra-fractional error compared with those acquired using the pre-, inter-beam, and post-6DoF image guidance and can be acquired within a standard treatment timeslot.
Collapse
Affiliation(s)
- Hiraku Iramina
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kiyonao Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
9
|
Kang DH, Chang BS, Kim H, Hong SH, Chang SY. Separation surgery followed by stereotactic ablative radiotherapy for metastatic epidural spinal cord compression: A systematic review and meta-analysis for local progression rate. J Bone Oncol 2022; 36:100450. [PMID: 35990514 PMCID: PMC9386097 DOI: 10.1016/j.jbo.2022.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Spinal metastasis is the most common metastatic skeletal disease in cancer patients. Metastatic epidural spinal cord compression (MESCC), which occurs in 5-14% of cancer patients, is an oncological emergency because it may cause a permanent neurological deficit. Separation surgery followed by stereotactic ablative radiotherapy (SABR), so-called "hybrid therapy," has shown effectiveness in local control of spinal metastasis and has become an integral treatment option for patients with MESCC. Therefore, we performed a meta-analysis and meta-regression analysis to clarify the local progression rate of hybrid therapy and the risk factors for local progression. Methods We searched PubMed, EMBASE, Scopus, Cochrane Library, and Web of Science databases from inception to December 2021. Meta-analyses of proportions were used to analyze the data using a random-effects model to calculate the pooled 1-year local progression rate and confidence interval. Subgroup analyses were performed using meta-analyses of odds ratio (OR) for comparisons between groups. We also conducted a meta-regression analysis to identify the factors that caused heterogeneity. Results A total of 661 patients from 13 studies (10 retrospective and 3 prospective) were included in the final meta-analysis. The quality of the included studies assessed using the Newcastle - Ottawa scale ranged from poor to fair (range, 4-6). The pooled local progression rate was 10.2 % (95 % confidence interval [CI], 7.8-12.8 %; I2 = 30 %) and 13.7 % (95 % CI, 9.3-18.8 %; I2 = 55 %) at postoperative 1 and 2 years, respectively. The subgroup analysis indicated that patients with a history of prior radiotherapy (OR, 5.14; 95 % CI, 1.71-15.51) and lower radiation dose per fraction (OR, 4.57; 95 % CI, 1.88-11.13) showed significantly higher pooled 1-year local progression rates. In the moderator analysis, the 1-year local progression rate was significantly associated with the proportion of patients with a history of prior radiotherapy (p = 0.036) and those with colorectal cancer as primary origin (p < 0.001). Conclusions The pooled 1-year local progression rate of hybrid therapy for MESCC was 10.2%. In subgroup and moderator analyses, a lower radiation dose per fraction, history of prior radiotherapy, and colorectal cancer showed a significant association with the 1-year local progression rate.
Collapse
Key Words
- CT, computed tomography
- CTV, clinical target volume
- GTV, gross tumor volume
- Gy, Gray
- Hybrid therapy
- Local progression
- MESCC, metastatic epidural spinal cord compression
- MOOSE, Meta-Analysis of Observational Studies in Epidemiology
- MRI, magnetic resonance imaging
- PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- PTV, planning target volume
- Radioresistance
- SABR, stereotactic ablative radiotherapy
- Separation surgery
- Spinal metastasis
- Stereotactic ablative radiotherapy
- cEBRT, conventional external beam radiation therapy
Collapse
Affiliation(s)
- Dong-Ho Kang
- Department of Orthopedic Surgery, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul, Republic of Korea
| | - Bong-Soon Chang
- Department of Orthopedic Surgery, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul, Republic of Korea
| | - Hyoungmin Kim
- Department of Orthopedic Surgery, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul, Republic of Korea
| | - Seong Hwa Hong
- Department of Orthopedic Surgery, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul, Republic of Korea
| | - Sam Yeol Chang
- Department of Orthopedic Surgery, Seoul National University College of Medicine and Seoul National University Hospital, 101 Daehangno, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|