1
|
Kristiansen CH, Thomas O, Nyquist AB, Sanderud A, Boavida J, Geitung JT, Tran TT, Lauritzen PM. A randomised controlled trial comparing three clinical administration strategies in spectral detector CT pulmonary angiography with low contrast medium dose. Eur Radiol 2025:10.1007/s00330-025-11420-8. [PMID: 39969554 DOI: 10.1007/s00330-025-11420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVES To compare vascular attenuation (VA) with three strategies for administering a low contrast medium (CM) dose in dual-layer spectral detector CT pulmonary angiography (CTPA). METHODS Patients were prospectively randomised into control- or one of two experimental groups. Control group patients received CM (350 mgI/mL) diluted 1:1 with saline. Experimental group B received CM (350 mgI/mL) with low flow. Experimental group C received CM with low concentration (140 mgI/mL). Virtual monoenergetic images at 40 and 55 kiloelectron Volt (keV) were reconstructed. Objective examination quality (OEQ) i.e., VA, noise, and signal-to-noise ratio, was measured and subjective examination quality (SEQ) was rated at three anatomical levels: in the pulmonary trunk (PT), the interlobar arteries and the posterior basal segmental arteries. PRIMARY OUTCOME VA in PT at 40 keV. SECONDARY OUTCOMES OEQ and SEQ across all anatomic levels. RESULTS A total of 328 patients were randomised. 112 vs 115 and 101 were analysed in the control (A) vs experimental groups (B and C), respectively. There were no differences in VA in PT between the groups: A vs B (p = 0.96), B vs C (p = 0.14), and A vs C (p = 0.18). Group C showed higher VA across all anatomical levels. There were no differences in SEQ. CONCLUSION There was no difference in the attenuation in the PT between the dilution-, low flow-, and low concentration groups. However, the low concentration group showed higher attenuation in the pulmonary arteries when all anatomical levels were assessed. KEY POINTS Question Contrast medium reduction may be accomplished with dilution, low flow, or low concentration. However, the effect of the different strategies on vascular attenuation is unknown. Findings There was no difference in pulmonary trunk attenuation between the three strategies on spectral detector CT pulmonary angiography. Clinical relevance Low contrast medium dose spectral detector CT pulmonary angiography may be implemented with the administration strategy of the unit's own choice.
Collapse
Affiliation(s)
- Cathrine Helgestad Kristiansen
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway.
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital, Lørenskog, Norway.
| | - Owen Thomas
- Health Services Research Department (HØKH), Akershus University Hospital, Lørenskog, Norway
| | - Anton Bengt Nyquist
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital, Lørenskog, Norway
| | - Audun Sanderud
- Decommissioning Department, Norwegian Nuclear Decommissioning, Halden, Norway
| | - Joao Boavida
- Department of Diagnostic Imaging, Nordland Hospital, Bodø, Norway
| | - Jonn Terje Geitung
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thien Trung Tran
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital, Lørenskog, Norway
| | - Peter Mæhre Lauritzen
- Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital, Lørenskog, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Nakashima M, Kawai T, Matsumoto K, Kawaguchi T, Kitera N, Watanabe S, Itoh T, Hiwatashi A. Delineation of the brachial plexus by contrast-enhanced photon-counting detector CT and virtual monoenergetic images. Eur J Radiol 2025; 184:111964. [PMID: 39908938 DOI: 10.1016/j.ejrad.2025.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVES To improve the image quality of the brachial plexus in photon-counting detector CT (PCD-CT) using contrast media and virtual monoenergetic images (VMI). MATERIALS & METHODS We retrospectively analyzed contrast-enhanced neck PCD-CT images scanned in March-July 2023. Unenhanced and contrast-enhanced images were compared, and then 40-, 70-, and 100-keV VMIs were compared. The qualitative evaluation used a five-point Likert scale regarding overall image quality (IQ), sharpness, and noise. The quantitative evaluation used the standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Freidman's test and one-way ANOVA were performed. RESULTS Forty patients (65 years ± 17, 21 males) were included. The median scores [interquartile range, IQR] for the unenhanced and contrast-enhanced groups were IQ, 3 [2,3] and 4 [3,4] (P < 0.001); sharpness, 3 [2,3] and 4 [3,4] (P < 0.001); and noise, 3 [3,4] and 3 [3,4] (P = 0.63). Mean ± SD scores were SD, 6.7 ± 1.4 and 6.7 ± 1.0 (P = 0.95); SNR, 5.1 ± 1.2 and 5.4 ± 1.4 (P = 0.04); and CNR, 4.8 ± 1.5 and 8.1 ± 2.3 (P < 0.001). The 40-, 70-, and 100-keV groups' IQ were 2 [2,3], 4 [3,4], and 3 [3,4]; their sharpness scores were 2 [2,3], 3 [3,4], and 3 [2,3] (all, P < 0.05). Those for noise were 2 [1-3], 3 [3,4], and 4 [3,4] (all, P < 0.001 except for 70-keV vs.100-keV: P = 0.16). The SDs were 13.1 ± 2.5, 7.5 ± 1.2, and 6.0 ± 1.1. The SNRs were 4.2 ± 1.9, 5.0 ± 1.2, and 5.7 ± 1.5 (all, P < 0.001). The CNRs were 8.7 ± 4.0, 6.8 ± 2.3, and 6.5 ± 2.3 (all, P < 0.001 except for 70-keV vs.100-keV: P = 0.51). CONCLUSION Contrast-enhanced PCD-CT and VMIs provided good delineation of the brachial plexus.
Collapse
Affiliation(s)
- Masahiro Nakashima
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Tatsuya Kawai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Kazuhisa Matsumoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takatsune Kawaguchi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Nobuo Kitera
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Seita Watanabe
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Toshihide Itoh
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Akio Hiwatashi
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
3
|
Higaki F, Hiramatsu M, Yasuhara T, Sasada S, Otani Y, Haruma J, Inoue T, Morimitsu Y, Akagi N, Matsui Y, Iguchi T, Hiraki T. Cranial and spinal computed tomography (CT) angiography with photon-counting detector CT: comparison with angiographic and operative findings. Jpn J Radiol 2025; 43:143-151. [PMID: 39283532 PMCID: PMC11790754 DOI: 10.1007/s11604-024-01661-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/08/2024] [Indexed: 02/04/2025]
Abstract
The clinical imaging features of photon-counting detector (PCD) computed tomography (CT) are mainly known as dose reduction, improvement of spatial resolution, and reduction of artifacts compared to energy-integrating detector CT (EID-CT). The utility of cranial and spinal PCD-CT and PCD-CT angiography (CTA) has been previously reported. CTA is a widely used technique for noninvasive evaluation. Cranial CTA is important in brain tumors, especially glioblastoma; it evaluates whether the tumor is highly vascularized prior to an operation and helps in the diagnosis and assessment of bleeding risk. Spinal CTA has an important role in the estimation of feeders and drainers prior to selective angiography in the cases of spinal epidural arteriovenous fistulas and spinal tumors, especially in hemangioblastoma. So far, EID-CTA is commonly performed in an adjunctive role prior to selective angiography; PCD-CTA with high spatial resolution can be an alternative to selective angiography. In the cases of cerebral aneurysms, flow diverters are important tools for the treatment of intracranial aneurysms, and postoperative evaluation with cone beam CT with angiography using diluted contrast media is performed to evaluate stent adhesion and in-stent thrombosis. If CTA can replace selective angiography, it will be less invasive for the patient. In this review, we present representative cases with PCD-CT. We also show how well the cranial and spinal PCD-CTA approaches the accuracy of angiographic and intraoperative findings.
Collapse
Affiliation(s)
- Fumiyo Higaki
- Department of Radiology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan.
| | - Masafumi Hiramatsu
- Department of Neurological Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Susumu Sasada
- Department of Neurological Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Jun Haruma
- Department of Neurological Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Tomohiro Inoue
- Division of Radiological Technology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Yusuke Morimitsu
- Division of Radiological Technology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Noriaki Akagi
- Division of Radiological Technology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Toshihiro Iguchi
- Department of Radiological Technology, Faculty of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Takao Hiraki
- Department of Radiology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| |
Collapse
|
4
|
Liu P, Zhou S, Dong H, Li J, Xu Z, Lin S, Yang W, Yan F, Qin L. Performance of iodine quantification through high-pitch dual-source photon-counting CT: a phantom study. Jpn J Radiol 2025; 43:309-318. [PMID: 39382795 DOI: 10.1007/s11604-024-01671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE To investigate the feasibility and accuracy of iodine quantification using PCD-CT in standard-pitch and high-pitch scanning at different scan parameters in a phantom model. MATERIALS AND METHODS Four inserts with known iodine concentrations (2, 5, 10, and 15 mg/mL) were placed in the removable CT phantom and scanned using high-pitch (3.2) and standard-pitch (0.8) modes on PCD-CT. Two tube voltages (120 and 140 kVp) and four radiation doses (1, 3, 5, and 10 mGy) were alternated. Each scan setting was repeated three times. Mean iodine concentration for each insert across three consecutive slices was recorded. Percentage absolute bias (PAB) was assessed for iodine quantification. RESULTS A total of 96 acquisitions were conducted. In small phantom, the average for PAB was 2.96% (range: 1.75% ~ 4.56%) and 1.67% (range: 1.00% ~ 3.42%) for high-pitch and standard-pitch acquisitions, respectively. In large phantom, it was 3.72% (range: 1.75% ~ 5.97%) and 2.94% (range: 1.75% ~ 4.70%). Linear regression analysis revealed that only phantom size significantly influenced (P < 0.001) the accuracy of iodine quantification. CONCLUSION The high-pitch scan mode in PCD-CT can be used to quantify iodine density with similar accuracy compared with standard pitch.
Collapse
Affiliation(s)
- Peng Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shanshui Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jiqiang Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhihan Xu
- CT Collaboration, Siemens Healthineers, 399 West Haiyang Road, Shanghai, 200126, China
| | - Shushen Lin
- CT Collaboration, Siemens Healthineers, 399 West Haiyang Road, Shanghai, 200126, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Le Qin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
5
|
Kawamura M, Shimojo M, Tatsugami F, Hirata K, Fujita S, Ueda D, Matsui Y, Fushimi Y, Fujioka T, Nozaki T, Yamada A, Ito R, Fujima N, Yanagawa M, Nakaura T, Tsuboyama T, Kamagata K, Naganawa S. Stereotactic arrhythmia radioablation for ventricular tachycardia: a review of clinical trials and emerging roles of imaging. JOURNAL OF RADIATION RESEARCH 2025; 66:1-9. [PMID: 39656944 PMCID: PMC11753837 DOI: 10.1093/jrr/rrae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/17/2024] [Indexed: 12/17/2024]
Abstract
Ventricular tachycardia (VT) is a severe arrhythmia commonly treated with implantable cardioverter defibrillators, antiarrhythmic drugs and catheter ablation (CA). Although CA is effective in reducing recurrent VT, its impact on survival remains uncertain, especially in patients with extensive scarring. Stereotactic arrhythmia radioablation (STAR) has emerged as a novel treatment for VT in patients unresponsive to CA, leveraging techniques from stereotactic body radiation therapy used in cancer treatments. Recent clinical trials and case series have demonstrated the short-term efficacy and safety of STAR, although long-term outcomes remain unclear. Imaging techniques, such as electroanatomical mapping, contrast-enhanced magnetic resonance imaging and nuclear imaging, play a crucial role in treatment planning by identifying VT substrates and guiding target delineation. However, challenges persist owing to the complex anatomy and variability in target volume definitions. Advances in imaging and artificial intelligence are expected to improve the precision and efficacy of STAR. The exact mechanisms underlying the antiarrhythmic effects of STAR, including potential fibrosis and improvement in cardiac conduction, are still being explored. Despite its potential, STAR should be cautiously applied in prospective clinical trials, with a focus on optimizing dose delivery and understanding long-term outcomes. Collaborative efforts are necessary to standardize treatment strategies and enhance the quality of life for patients with refractory VT.
Collapse
Affiliation(s)
- Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masafumi Shimojo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho,Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
6
|
Hatabu H, Yanagawa M, Yamada Y, Hino T, Yamasaki Y, Hata A, Ueda D, Nakamura Y, Ozawa Y, Jinzaki M, Ohno Y. Recent trends in scientific research in chest radiology: What to do or not to do? That is the critical question in research. Jpn J Radiol 2025:10.1007/s11604-025-01735-3. [PMID: 39815124 DOI: 10.1007/s11604-025-01735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Hereby inviting young rising stars in chest radiology in Japan for contributing what they are working currently, we would like to show the potentials and directions of the near future research trends in the research field. I will provide a reflection on my own research topics. At the end, we also would like to discuss on how to choose the themes and topics of research: What to do or not to do? We strongly believe it will stimulate and help investigators in the field.
Collapse
Affiliation(s)
- Hiroto Hatabu
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA.
| | - Masahiro Yanagawa
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Takuya Hino
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuzo Yamasaki
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akinori Hata
- Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yusei Nakamura
- Department of Radiology, Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
7
|
Gunaseelan N, Saha P, Maher N, Pan D. Nanoparticles with " K-edge" Metals Bring "Color" in Multiscale Spectral Photon Counting X-ray Imaging. ACS NANO 2024; 18:34464-34491. [PMID: 39652749 DOI: 10.1021/acsnano.4c11724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Preclinical and clinical diagnostics depend greatly on medical imaging, which enables the identification of physiological and pathological processes in living subjects. It is often necessary to use contrast agents to complement anatomical data with functional information or to describe the disease phenotypically. Nanomaterials are used as contrast agents in many advanced bioimaging techniques and applications because of their high payload, physicochemical properties, improved sensitivity, and multimodality. Metals with k-edge energy within the X-ray bandwidth respond to photon counting and spectral X-ray imaging. This Perspective examines the progress made in the emerging area of nanoparticle-based k-edge contrast agents. These nano "k-edge" particles have been explored with spectral photon counting CT (SPCCT) for multiplexed molecular imaging, pushing the boundaries of resolution and capabilities of CT imaging. Design considerations, contrast properties, and biological behavior are discussed in detail. The key applications are highlighted by categorizing these nanomaterials based on their X-ray, k-edge energy, and biological properties, as well as their synthesis, functionalization, and characterization processes. The article delves into the transformative impact of nano "k-edge" particles on early disease detection and other biomedical applications. The review provides further insights into how the "k-edge signatures" of these nanoparticles combined with photon counting technique can be leveraged for quantitative, multicontrast imaging of diseases. We also discuss the status quo of clinically approved nanoparticles for imaging and highlight the challenges such as toxicity and clearance as well as promising clinical perspectives, providing a balanced view of the potential and limitations of these nanomaterials. Furthermore, we discuss the necessary future research efforts required to clinically translate nano "k-edge" particles as SPCCT contrast agents for early disease diagnosis and tracking.
Collapse
Affiliation(s)
- Nivetha Gunaseelan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Pranay Saha
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nada Maher
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Pan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Sharma SP, Lemmens MJDK, Smulders MW, Budde RPJ, Hirsch A, Mihl C. Photon-counting detector computed tomography in cardiac imaging. Neth Heart J 2024; 32:405-416. [PMID: 39356451 PMCID: PMC11502613 DOI: 10.1007/s12471-024-01904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Photon-counting detector computed tomography (PCD-CT) has emerged as a revolutionary technology in CT imaging. PCD-CT offers significant advancements over conventional energy-integrating detector CT, including increased spatial resolution, artefact reduction and inherent spectral imaging capabilities. In cardiac imaging, PCD-CT can offer a more accurate assessment of coronary artery disease, plaque characterisation and the in-stent lumen. Additionally, it might improve the visualisation of myocardial fibrosis through qualitative late enhancement imaging and quantitative extracellular volume measurements. The use of PCD-CT in cardiac imaging holds significant potential, positioning itself as a valuable modality that could serve as a one-stop-shop by integrating both angiography and tissue characterisation into a single examination. Despite its potential, large-scale clinical trials, standardisation of protocols and cost-effectiveness considerations are required for its broader integration into clinical practice. This narrative review provides an overview of the current literature on PCD-CT regarding the possibilities and limitations of cardiac imaging.
Collapse
Affiliation(s)
- Simran P Sharma
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
| | - Marie-Julie D K Lemmens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martijn W Smulders
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
| | - Alexander Hirsch
- Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
- Department of Cardiology, Cardiovascular Institute, Erasmus Medical Centre, University Medical Centre, Rotterdam, The Netherlands
| | - Casper Mihl
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Alagic Z, Valls Duran C, Suzuki C, Halldorsson K, Svensson-Marcial A, Saeter R, Koskinen SK. Photon-counting detector computed tomography: iodine density versus virtual monoenergetic imaging of pancreatic ductal adenocarcinoma. Abdom Radiol (NY) 2024:10.1007/s00261-024-04605-0. [PMID: 39400586 DOI: 10.1007/s00261-024-04605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Zlatan Alagic
- Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm, 171 76, Sweden.
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - Carlos Valls Duran
- Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Chikako Suzuki
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, 171 77, Sweden
- Department of Diagnostic Radiology, Stockholm South General Hospital, Stockholm, 118 83, Sweden
| | - Kolbeinn Halldorsson
- Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm, 171 76, Sweden
| | - Anders Svensson-Marcial
- Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Rebecca Saeter
- Department of Medical Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, 171 76, Sweden
| | - Seppo K Koskinen
- Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
10
|
Hokamura M, Nakaura T, Yoshida N, Uetani H, Shiraishi K, Kobayashi N, Matsuo K, Morita K, Nagayama Y, Kidoh M, Yamashita Y, Miyamoto T, Hirai T. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging. Eur J Radiol 2024; 178:111587. [PMID: 39002269 DOI: 10.1016/j.ejrad.2024.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVES This study aims to assess the effectiveness of super-resolution deep-learning-based reconstruction (SR-DLR), which leverages k-space data, on the image quality of lumbar spine magnetic resonance (MR) bone imaging using a 3D multi-echo in-phase sequence. MATERIALS AND METHODS In this retrospective study, 29 patients who underwent lumbar spine MRI, including an MR bone imaging sequence between January and April 2023, were analyzed. Images were reconstructed with and without SR-DLR (Matrix sizes: 960 × 960 and 320 × 320, respectively). The signal-to-noise ratio (SNR) of the vertebral body and spinal canal and the contrast and contrast-to-noise ratio (CNR) between the vertebral body and spinal canal were quantitatively evaluated. Furthermore, the slope at half-peak points of the profile curve drawn across the posterior border of the vertebral body was calculated. Two radiologists independently assessed image noise, contrast, artifacts, sharpness, and overall image quality of both image types using a 4-point scale. Interobserver agreement was evaluated using weighted kappa coefficients, and quantitative and qualitative scores were compared via the Wilcoxon signed-rank test. RESULTS SNRs of the vertebral body and spinal canal were notably improved in images with SR-DLR (p < 0.001). Contrast and CNR were significantly enhanced with SR-DLR compared to those without SR-DLR (p = 0.023 and p = 0.022, respectively). The slope of the profile curve at half-peak points across the posterior border of the vertebral body and spinal canal was markedly higher with SR-DLR (p < 0.001). Qualitative scores (noise: p < 0.001, contrast: p < 0.001, artifact p = 0.042, sharpness: p < 0.001, overall image quality: p < 0.001) were superior in images with SR-DLR compared to those without. Kappa analysis indicated moderate to good agreement (noise: κ = 0.56, contrast: κ = 0.51, artifact: κ = 0.46, sharpness: κ = 0.76, overall image quality: κ = 0.44). CONCLUSION SR-DLR, which is based on k-space data, has the potential to enhance the image quality of lumbar spine MR bone imaging utilizing a 3D gradient echo in-phase sequence. CLINICAL RELEVANCE STATEMENT The application of SR-DLR can lead to improvements in lumbar spine MR bone imaging quality.
Collapse
Affiliation(s)
- Masamichi Hokamura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Naofumi Yoshida
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Kaori Shiraishi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Naoki Kobayashi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Kensei Matsuo
- Department of Central Radiology, Kumamoto University Hospital, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Kosuke Morita
- Department of Central Radiology, Kumamoto University Hospital, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Yuichi Yamashita
- Canon Medical Systems Corporation, 70-1, Yanagi-cho, Saiwai-ku, Kawasaki-shi, Kanagawa 212-0015, Japan.
| | - Takeshi Miyamoto
- Orthopedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan.
| |
Collapse
|
11
|
Mourad C, Gallego Manzano L, Viry A, Booij R, Oei EHG, Becce F, Omoumi P. Chances and challenges of photon-counting CT in musculoskeletal imaging. Skeletal Radiol 2024; 53:1889-1902. [PMID: 38441616 PMCID: PMC11303444 DOI: 10.1007/s00256-024-04622-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 08/09/2024]
Abstract
In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications. Recently, the advent of photon-counting detectors (PCDs) has further advanced the potential of CT, at least in theory. Compared to conventional energy-integrating detectors (EIDs), PCDs provide superior spatial resolution, reduced noise, and intrinsic spectral imaging capabilities. This review briefly describes the technical advantages of PCDs. For each technical feature, the corresponding applications in musculoskeletal imaging will be discussed, including high-spatial resolution imaging for the assessment of bone and crystal deposits, low-dose applications such as whole-body CT, as well as spectral imaging applications including the characterization of crystal deposits and imaging of metal hardware. Finally, we will highlight the potential of PCD-CT in emerging applications, underscoring the need for further preclinical and clinical validation to unleash its full clinical potential.
Collapse
Affiliation(s)
- Charbel Mourad
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Diagnostic Imaging and Interventional Therapeutics, Hôpital Libanais Geitaoui-CHU, Beyrouth, Lebanon
| | - Lucia Gallego Manzano
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anaïs Viry
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ronald Booij
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fabio Becce
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Toia GV, Mileto A, Borhani AA, Chen GH, Ren L, Uyeda JW, Marin D. Approaches, advantages, and challenges to photon counting detector and multi-energy CT. Abdom Radiol (NY) 2024; 49:3251-3260. [PMID: 38744702 DOI: 10.1007/s00261-024-04357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
Photon counting detector CT (PCD-CT) is the newest major development in CT technology and has been commercially available since 2021. It offers major technological advantages over current standard-of-care energy integrating detector CT (EID-CT) including improved spatial resolution, improved iodine contrast to noise ratio, multi-energy imaging, and reduced noise. This article serves as a foundational basis to the technical approaches and concepts of PCD-CT technology with primary emphasis on detector technology in direct comparison to EID-CT. The article also addresses current technological challenges to PCD-CT with particular attention to cross talk and its causes (e.g., Compton scattering, fluorescence, charge sharing, K-escape) as well as pile-up.
Collapse
Affiliation(s)
- Giuseppe V Toia
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA.
| | - Achille Mileto
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Amir A Borhani
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Guang-Hong Chen
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Liqiang Ren
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer W Uyeda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniele Marin
- Department of Radiology, Duke University Health System, Durham, NC, USA
| |
Collapse
|
13
|
Carrino JA, Ibad H, Lin Y, Ghotbi E, Klein J, Demehri S, Del Grande F, Bogner E, Boesen MP, Siewerdsen JH. CT in musculoskeletal imaging: still helpful and for what? Skeletal Radiol 2024; 53:1711-1725. [PMID: 38969781 DOI: 10.1007/s00256-024-04737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024]
Abstract
Computed tomography (CT) is a common modality employed for musculoskeletal imaging. Conventional CT techniques are useful for the assessment of trauma in detection, characterization and surgical planning of complex fractures. CT arthrography can depict internal derangement lesions and impact medical decision making of orthopedic providers. In oncology, CT can have a role in the characterization of bone tumors and may elucidate soft tissue mineralization patterns. Several advances in CT technology have led to a variety of acquisition techniques with distinct clinical applications. These include four-dimensional CT, which allows examination of joints during motion; cone-beam CT, which allows examination during physiological weight-bearing conditions; dual-energy CT, which allows material decomposition useful in musculoskeletal deposition disorders (e.g., gout) and bone marrow edema detection; and photon-counting CT, which provides increased spatial resolution, decreased radiation, and material decomposition compared to standard multi-detector CT systems due to its ability to directly translate X-ray photon energies into electrical signals. Advanced acquisition techniques provide higher spatial resolution scans capable of enhanced bony microarchitecture and bone mineral density assessment. Together, these CT acquisition techniques will continue to play a substantial role in the practices of orthopedics, rheumatology, metabolic bone, oncology, and interventional radiology.
Collapse
Affiliation(s)
- John A Carrino
- Weill Cornell Medicine, New York, NY, USA.
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA.
| | - Hamza Ibad
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yenpo Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Elena Ghotbi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joshua Klein
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Shadpour Demehri
- Musculoskeletal Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline Street, JHOC 5165, Baltimore, MD, 21287, USA
| | - Filippo Del Grande
- Clinic of Radiology, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana (USI), Via G. Buffi 13, 6904, Lugano, Switzerland
| | - Eric Bogner
- Department of Radiology and Imaging, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA
| | - Mikael P Boesen
- Department of Radiology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Nielsine Nielsens Vej 5, Entrance 7A, 3Rd Floor, 2400, Copenhagen, NV, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeffrey H Siewerdsen
- Department of Imaging Physics, Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Leng S, Toia GV, Hoodeshenas S, Ramirez-Giraldo JC, Yagil Y, Maltz JS, Boedeker K, Li K, Baffour F, Fletcher JG. Standardizing technical parameters and terms for abdominopelvic photon-counting CT: laying the groundwork for innovation and evidence sharing. Abdom Radiol (NY) 2024; 49:3261-3273. [PMID: 38769199 DOI: 10.1007/s00261-024-04342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Photon-counting detector CT (PCD-CT) is a new technology that has multiple diagnostic benefits including increased spatial resolution, iodine signal, and radiation dose efficiency, as well as multi-energy imaging capability, but which also has unique challenges in abdominal imaging. The purpose of this work is to summarize key features, technical parameters, and terms, which are common amongst current abdominopelvic PCD-CT systems and to propose standardized terminology (where none exists). In addition, user-selectable protocol parameters are highlighted to facilitate both scientific evaluation and early clinical adoption. Unique features of PCD-CT systems include photon-counting detectors themselves, energy thresholds and bins, and tube potential considerations for preserved spectral separation. Key parameters for describing different PCD-CT systems are reviewed and explained. While PCD-CT can generate multi-energy images like dual-energy CT, there are new types of images such as threshold images, energy bin images, and special spectral images. The standardized terms and concepts herein build upon prior interdisciplinary consensus and have been endorsed by the newly created Society of Abdominal Radiology Photon-counting CT Emerging Technology Commission.
Collapse
Affiliation(s)
- Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Giuseppe V Toia
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Safa Hoodeshenas
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Yoad Yagil
- PD CT/AMI R&D Advanced Development, Philips Medical Systems, Haifa, Israel
| | - Jonathan S Maltz
- Molecular Imaging and Computed Tomography, GE Healthcare, Waukesha, WI, USA
| | | | - Ke Li
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Francis Baffour
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
Meloni A, Maffei E, Positano V, Clemente A, De Gori C, Berti S, La Grutta L, Saba L, Bossone E, Mantini C, Cavaliere C, Punzo B, Celi S, Cademartiri F. Technical principles, benefits, challenges, and applications of photon counting computed tomography in coronary imaging: a narrative review. Cardiovasc Diagn Ther 2024; 14:698-724. [PMID: 39263472 PMCID: PMC11384460 DOI: 10.21037/cdt-24-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
Background and Objective The introduction of photon-counting computed tomography (PCCT) represents the most recent groundbreaking advancement in clinical computed tomography (CT). PCCT has the potential to overcome the limitations of traditional CT and to provide new quantitative imaging information. This narrative review aims to summarize the technical principles, benefits, and challenges of PCCT and to provide a concise yet comprehensive summary of the applications of PCCT in the domain of coronary imaging. Methods A review of PubMed, Scopus, and Google Scholar was performed until October 2023 by using relevant keywords. Articles in English were considered. Key Content and Findings The main advantages of PCCT over traditional CT are enhanced spatial resolution, improved signal and contrast characteristics, diminished electronic noise and image artifacts, lower radiation exposure, and multi-energy capability with enhanced material discrimination. These key characteristics have made room for improved assessment of plaque volume and severity of stenosis, more precise assessment of coronary artery calcifications, also preserved in the case of a reduced radiation dose, improved assessment of plaque composition, possibility to provide details regarding the biological processes occurring within the plaque, enhanced quality and accuracy of coronary stent imaging, and improved radiomic analyses. Conclusions PCCT can significantly impact diagnostic and clinical pathways and improve the management of patients with coronary artery diseases (CADs).
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Erica Maffei
- Department of Radiology, IRCCS SYNLAB SDN, Naples, Italy
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Massa, Italy
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties - ProMISE, University of Palermo, Palermo, Italy
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, Monserrato (CA), Italy
| | - Eduardo Bossone
- Department of Cardiology, Antonio Cardarelli Hospital, Naples, Italy
| | - Cesare Mantini
- Department of Radiology, "G. D'Annunzio" University, Chieti, Italy
| | | | - Bruna Punzo
- Department of Radiology, IRCCS SYNLAB SDN, Naples, Italy
| | - Simona Celi
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Massa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| |
Collapse
|
16
|
Nakaki Y, Fukumoto W, Higashibori H, Kawashita I, Nakamura Y, Awai K. Performance of postmortem CT in the diagnosis of natural death from out-of-hospital cardiac arrest. Jpn J Radiol 2024; 42:825-831. [PMID: 38625477 PMCID: PMC11286624 DOI: 10.1007/s11604-024-01559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Postmortem CT (PMCT) is used widely to identify the cause of death. However, its diagnostic performance in cases of natural death from out-of-hospital cardiac arrest (OHCA) may be unsatisfactory because the cause tends to be cardiogenic and cannot be detected on PMCT images. We retrospectively investigated the diagnostic performance of PMCT in the diagnosis of natural death from OHCA and compared it to that of unnatural death. MATERIALS AND METHODS Our series included 450 cases; 336 were natural- and 114 were unnatural death cases. Between 2018 and 2022 all underwent non-contrast PMCT to identify the cause of death. Two radiologists reviewed the PMCT images and categorized them as diagnostic (PMCT alone sufficient to determine the cause of death), suggestive (the cause of death was suggested but additional information was needed), and non-diagnostic (the cause of death could not be determined on PMCT images). The diagnostic performance of PMCT was defined by the percentage of diagnosable and suggestive cases and compared between natural- and unnatural death cases. Interobserver agreement for the cause of death on PMCT images was also assessed with the Cohen kappa coefficient of concordance. RESULTS The diagnostic performance of PMCT for the cause of natural- and unnatural deaths from OHCA was 30.3% and 66.6%, respectively (p < 0.01). The interobserver agreement for the cause of natural- and unnatural deaths on PMCT images was very good with kappa value 0.92 and 0.96, respectively. CONCLUSION As PMCT identified the cause of natural death by OHCA in only 30% of cases, its diagnostic performance must be improved.
Collapse
Affiliation(s)
- Yu Nakaki
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Wataru Fukumoto
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan.
- Center for Cause of Death Investigation Research, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan.
| | - Haruka Higashibori
- Department of Diagnostic Imaging, JA Hiroshima General Hospital, 1-3-3 Jigozen, Hatsukaichi-Shi, Hiroshima, 738-0042, Japan
| | - Ikuo Kawashita
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Yuko Nakamura
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| | - Kazuo Awai
- Department of Diagnostic Radiology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
- Center for Cause of Death Investigation Research, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, 734-8551, Japan
| |
Collapse
|
17
|
Chang JY, Makary MS. Evolving and Novel Applications of Artificial Intelligence in Thoracic Imaging. Diagnostics (Basel) 2024; 14:1456. [PMID: 39001346 PMCID: PMC11240935 DOI: 10.3390/diagnostics14131456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
The advent of artificial intelligence (AI) is revolutionizing medicine, particularly radiology. With the development of newer models, AI applications are demonstrating improved performance and versatile utility in the clinical setting. Thoracic imaging is an area of profound interest, given the prevalence of chest imaging and the significant health implications of thoracic diseases. This review aims to highlight the promising applications of AI within thoracic imaging. It examines the role of AI, including its contributions to improving diagnostic evaluation and interpretation, enhancing workflow, and aiding in invasive procedures. Next, it further highlights the current challenges and limitations faced by AI, such as the necessity of 'big data', ethical and legal considerations, and bias in representation. Lastly, it explores the potential directions for the application of AI in thoracic radiology.
Collapse
Affiliation(s)
- Jin Y Chang
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mina S Makary
- Department of Radiology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Vascular and Interventional Radiology, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Yamada A. Quantifying image quality: are we approaching the grail? Eur Radiol 2024; 34:4492-4493. [PMID: 38175224 DOI: 10.1007/s00330-023-10563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
19
|
Yoshida K, Tanabe Y, Hosokawa T, Morikawa T, Fukuyama N, Kobayashi Y, Kouchi T, Kawaguchi N, Matsuda M, Kido T, Kido T. Coronary computed tomography angiography for clinical practice. Jpn J Radiol 2024; 42:555-580. [PMID: 38453814 PMCID: PMC11139719 DOI: 10.1007/s11604-024-01543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024]
Abstract
Coronary artery disease (CAD) is a common condition caused by the accumulation of atherosclerotic plaques. It can be classified into stable CAD or acute coronary syndrome. Coronary computed tomography angiography (CCTA) has a high negative predictive value and is used as the first examination for diagnosing stable CAD, particularly in patients at intermediate-to-high risk. CCTA is also adopted for diagnosing acute coronary syndrome, particularly in patients at low-to-intermediate risk. Myocardial ischemia does not always co-exist with coronary artery stenosis, and the positive predictive value of CCTA for myocardial ischemia is limited. However, CCTA has overcome this limitation with recent technological advancements such as CT perfusion and CT-fractional flow reserve. In addition, CCTA can be used to assess coronary artery plaques. Thus, the indications for CCTA have expanded, leading to an increased demand for radiologists. The CAD reporting and data system (CAD-RADS) 2.0 was recently proposed for standardizing CCTA reporting. This RADS evaluates and categorizes patients based on coronary artery stenosis and the overall amount of coronary artery plaque and links this to patient management. In this review, we aimed to review the major trials and guidelines for CCTA to understand its clinical role. Furthermore, we aimed to introduce the CAD-RADS 2.0 including the assessment of coronary artery stenosis, plaque, and other key findings, and highlight the steps for CCTA reporting. Finally, we aimed to present recent research trends including the perivascular fat attenuation index, artificial intelligence, and the advancements in CT technology.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takaaki Hosokawa
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tomoro Morikawa
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoki Fukuyama
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yusuke Kobayashi
- Department of Radiology, Matsuyama Red Cross Hospital, Bunkyocho, Matsuyama, Ehime, Japan
| | - Takanori Kouchi
- Department of Radiology, Juzen General Hospital, Kitashinmachi, Niihama, Ehime, Japan
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Megumi Matsuda
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
20
|
Fukamatsu F, Yamada A, Yamada K, Nonaka T, Aonuma T, Tsukahara Y, Kawakami S, Sasaki H, Fujinaga Y. Serial assessment of computed tomography angiography for pulmonary and systemic arteries using a reduced contrast agent dose for the diagnosis of systemic artery-to-pulmonary artery shunts. Jpn J Radiol 2024; 42:460-467. [PMID: 38148339 PMCID: PMC11056326 DOI: 10.1007/s11604-023-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE To evaluate the diagnostic performance and feasibility of a modified computed tomography (CT) scan protocol, we performed a serial assessment of the computed tomography angiography for pulmonary artery (CTA-P) and systemic artery (CTA-S) (CTA-PS) using a reduced contrast agent dose to diagnose systemic artery-to-pulmonary artery shunts (SPSs). MATERIALS AND METHODS Twenty-five patients who underwent multiphase contrast-enhanced chest CT and conventional chest angiography were included. Three image sets (CTA-P, CTA-S, and CTA-PS) were evaluated by two board-certified radiologists. The visualization of the CT image findings associated with SPSs, such as filling defects and enhancement in the pulmonary arteries, was evaluated using a 5-point scale. RESULTS The diagnostic performance (sensitivity, specificity, and accuracy) of CT imaging findings associated with SPSs in CTA-P and CTA-PS were as follows: CTA-P, 57.1%, 87.5%, and 62.0%; CTA-PS, 81.0%, 100.0%, and 84.0%. CT findings associated with SPSs in CTA-P were significantly sensitive to the CTA-PS protocol. There were no significant differences between the CTA-S and CTA-PS protocols. The area under the curve (AUC) of the CT imaging findings associated with SPSs in the CTA-P and CTA-PS groups was 0.835 and 0.911, respectively (P = 0.191). The AUC of the CT imaging findings associated with SPSs in CTA-S and CTA-PS were 0.891 and 0.926, respectively (P = 0.373). CONCLUSION CTA-PS using a reduced contrast agent dose protocol could improve the overall diagnostic confidence of SPSs, owing to better visualization of CT imaging findings associated with SPSs compared to individual assessments of CTA-P or CTA-S. Therefore, CTA-PS can be used as an alternative preembolization evaluation modality to conventional angiography in patients with hemoptysis suspected of having SPSs.
Collapse
Affiliation(s)
- Fumiaki Fukamatsu
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Keiichi Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Tomofumi Nonaka
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Takanori Aonuma
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yoshinori Tsukahara
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Satoshi Kawakami
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hiroyuki Sasaki
- Division of Radiology, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yasunari Fujinaga
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
21
|
Barat M, Pellat A, Hoeffel C, Dohan A, Coriat R, Fishman EK, Nougaret S, Chu L, Soyer P. CT and MRI of abdominal cancers: current trends and perspectives in the era of radiomics and artificial intelligence. Jpn J Radiol 2024; 42:246-260. [PMID: 37926780 DOI: 10.1007/s11604-023-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Abdominal cancers continue to pose daily challenges to clinicians, radiologists and researchers. These challenges are faced at each stage of abdominal cancer management, including early detection, accurate characterization, precise assessment of tumor spread, preoperative planning when surgery is anticipated, prediction of tumor aggressiveness, response to therapy, and detection of recurrence. Technical advances in medical imaging, often in combination with imaging biomarkers, show great promise in addressing such challenges. Information extracted from imaging datasets owing to the application of radiomics can be used to further improve the diagnostic capabilities of imaging. However, the analysis of the huge amount of data provided by these advances is a difficult task in daily practice. Artificial intelligence has the potential to help radiologists in all these challenges. Notably, the applications of AI in the field of abdominal cancers are expanding and now include diverse approaches for cancer detection, diagnosis and classification, genomics and detection of genetic alterations, analysis of tumor microenvironment, identification of predictive biomarkers and follow-up. However, AI currently has some limitations that need further refinement for implementation in the clinical setting. This review article sums up recent advances in imaging of abdominal cancers in the field of image/data acquisition, tumor detection, tumor characterization, prognosis, and treatment response evaluation.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Anna Pellat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Christine Hoeffel
- Department of Radiology, Hopital Robert Debré, CHU Reims, Université Champagne-Ardennes, 51092, Reims, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Romain Coriat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stéphanie Nougaret
- Department of Radiology, Montpellier Cancer Institute, 34000, Montpellier, France
- PINKCC Lab, IRCM, U1194, 34000, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France.
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France.
| |
Collapse
|
22
|
Funama Y, Oda S, Teramoto F, Aoki Y, Takahashi I, Kojima S, Goto T, Tanaka K, Kidoh M, Nagayama Y, Nakaura T, Hirai T. Improving Visualization of In-stent Lumen Using Prototype Photon-counting Detector Computed Tomography with High-resolution Plaque Kernel. J Med Phys 2024; 49:127-132. [PMID: 38828063 PMCID: PMC11141743 DOI: 10.4103/jmp.jmp_163_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 06/05/2024] Open
Abstract
The study aimed to compare the performance of photon-counting detector computed tomography (PCD CT) with high-resolution (HR)-plaque kernel with that of the energy-integrating detector CT (EID CT) in terms of the visualization of the lumen size and the in-stent stenotic portion at different coronary vessel angles. The lumen sizes in PCD CT and EID CT images were 2.13 and 1.80 mm at 0°, 2.20 and 1.77 mm at 45°, and 2.27 mm and 1.67 mm at 90°, respectively. The lumen sizes in PCD CT with HR-plaque kernel were wider than those in EID CT. The mean degree of the in-stent stenotic portion at 50% was 69.7% for PCD CT and 90.4% for EID CT. PCD CT images with HR-plaque kernel enable improved visualization of lumen size and accurate measurements of the in-stent stenotic portion compared to conventional EID CT images regardless of the stent direction.
Collapse
Affiliation(s)
- Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fuyuhiko Teramoto
- Medical System Research and Development Center, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Yuko Aoki
- Medical System Research and Development Center, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Isao Takahashi
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Shinichi Kojima
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Taiga Goto
- Medical System Research and Development Center, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Kana Tanaka
- Medical System Research and Development Center, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
23
|
Jarunnarumol N, Kamalian S, Lev MH, Gupta R. Neuroradiology Applications of Dual and Multi-energy Computed Tomography. Radiol Clin North Am 2023; 61:973-985. [PMID: 37758364 DOI: 10.1016/j.rcl.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Computed tomography (CT) imaging has become an essential diagnostic tool for most emergent clinical conditions, owing to its speed, accuracy, cost, and few contraindications, compared with MR imaging cross-sectional imaging. Spectral CT, which includes dual, multienergy, and photon-counting CT, is superior to conventional single-energy CT (SECT) in many respects. Spectral information enables differentiation between materials with similar Hounsfield Unit attenuations on SECT; examples include but are not limited to "virtual noncontrast," "virtual noncalcium," and most notably for neuro applications, "hemorrhage versus iodine." This article expands on the many possible benefits of spectral CT in neuroimaging.
Collapse
Affiliation(s)
- Natthawut Jarunnarumol
- Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Shahmir Kamalian
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael H Lev
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rajiv Gupta
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
24
|
Yanagawa M, Ito R, Nozaki T, Fujioka T, Yamada A, Fujita S, Kamagata K, Fushimi Y, Tsuboyama T, Matsui Y, Tatsugami F, Kawamura M, Ueda D, Fujima N, Nakaura T, Hirata K, Naganawa S. New trend in artificial intelligence-based assistive technology for thoracic imaging. LA RADIOLOGIA MEDICA 2023; 128:1236-1249. [PMID: 37639191 PMCID: PMC10547663 DOI: 10.1007/s11547-023-01691-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Although there is no solid agreement for artificial intelligence (AI), it refers to a computer system with intelligence similar to that of humans. Deep learning appeared in 2006, and more than 10 years have passed since the third AI boom was triggered by improvements in computing power, algorithm development, and the use of big data. In recent years, the application and development of AI technology in the medical field have intensified internationally. There is no doubt that AI will be used in clinical practice to assist in diagnostic imaging in the future. In qualitative diagnosis, it is desirable to develop an explainable AI that at least represents the basis of the diagnostic process. However, it must be kept in mind that AI is a physician-assistant system, and the final decision should be made by the physician while understanding the limitations of AI. The aim of this article is to review the application of AI technology in diagnostic imaging from PubMed database while particularly focusing on diagnostic imaging in thorax such as lesion detection and qualitative diagnosis in order to help radiologists and clinicians to become more familiar with AI in thorax.
Collapse
Affiliation(s)
- Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-City, Osaka, 565-0871, Japan.
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-2621, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N15, W5, Kita-ku, Sapporo, 060-8638, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15 Nish I 7, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
25
|
Leguízamo-Isaza JM, Campaña Perilla LA, Ayala Valderrama JF, Pinzón Valderrama BA. Photon-Counting Computed Tomography: A Potentially Groundbreaking Imaging Technology With Challenges to be Faced. Can Assoc Radiol J 2023:8465371231200837. [PMID: 37703131 DOI: 10.1177/08465371231200837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Affiliation(s)
- Juan Martín Leguízamo-Isaza
- Department of Diagnostic Imaging, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Diagnostic Radiology Residency Program, Universidad El Bosque, Bogotá, Colombia
| | | | - Juan Francisco Ayala Valderrama
- Department of Diagnostic Imaging, Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Diagnostic Radiology Residency Program, Universidad El Bosque, Bogotá, Colombia
| | | |
Collapse
|
26
|
Stein T, Rau A, Russe MF, Arnold P, Faby S, Ulzheimer S, Weis M, Froelich MF, Overhoff D, Horger M, Hagen F, Bongers M, Nikolaou K, Schönberg SO, Bamberg F, Weiß J. Photon-Counting Computed Tomography - Basic Principles, Potenzial Benefits, and Initial Clinical Experience. ROFO-FORTSCHR RONTG 2023; 195:691-698. [PMID: 36863367 DOI: 10.1055/a-2018-3396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Photon-counting computed tomography (PCCT) is a promising new technology with the potential to fundamentally change today's workflows in the daily routine and to provide new quantitative imaging information to improve clinical decision-making and patient management. METHOD The content of this review is based on an unrestricted literature search on PubMed and Google Scholar using the search terms "Photon-Counting CT", "Photon-Counting detector", "spectral CT", "Computed Tomography" as well as on the authors' experience. RESULTS The fundamental difference with respect to the currently established energy-integrating CT detectors is that PCCT allows counting of every single photon at the detector level. Based on the identified literature, PCCT phantom measurements and initial clinical studies have demonstrated that the new technology allows improved spatial resolution, reduced image noise, and new possibilities for advanced quantitative image postprocessing. CONCLUSION For clinical practice, the potential benefits include fewer beam hardening artifacts, radiation dose reduction, and the use of new contrast agents. In this review, we will discuss basic technical principles and potential clinical benefits and demonstrate first clinical use cases. KEY POINTS · Photon-counting computed tomography (PCCT) has been implemented in the clinical routine. · Compared to energy-integrating detector CT, PCCT allows the reduction of electronic image noise. · PCCT provides increased spatial resolution and a higher contrast-to-noise ratio. · The novel detector technology allows the quantification of spectral information. CITATION FORMAT · Stein T, Rau A, Russe MF et al. Photon-Counting Computed Tomography - Basic Principles, Potenzial Benefits, and Initial Clinical Experience. Fortschr Röntgenstr 2023; 195: 691 - 698.
Collapse
Affiliation(s)
- Thomas Stein
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Germany
| | - Alexander Rau
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Germany
| | - Maximilian Frederik Russe
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Germany
| | - Philipp Arnold
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Germany
| | - Sebastian Faby
- Computed Tomography, Siemens Healthcare GmbH, Forchheim, Germany
| | - Stefan Ulzheimer
- Computed Tomography, Siemens Healthcare GmbH, Forchheim, Germany
| | - Meike Weis
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Germany
| | - Daniel Overhoff
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Germany
| | - Marius Horger
- Department of Radiology, University Hospitals Tübingen, Germany
| | - Florian Hagen
- Department of Radiology, University Hospitals Tübingen, Germany
| | - Malte Bongers
- Department of Radiology, University Hospitals Tübingen, Germany
| | | | - Stefan O Schönberg
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Germany
| | - Jakob Weiß
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Germany
| |
Collapse
|
27
|
Borges AP, Antunes C, Caseiro-Alves F. Spectral CT: Current Liver Applications. Diagnostics (Basel) 2023; 13:diagnostics13101673. [PMID: 37238163 DOI: 10.3390/diagnostics13101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Using two different energy levels, dual-energy computed tomography (DECT) allows for material differentiation, improves image quality and iodine conspicuity, and allows researchers the opportunity to determine iodine contrast and radiation dose reduction. Several commercialized platforms with different acquisition techniques are constantly being improved. Furthermore, DECT clinical applications and advantages are continually being reported in a wide range of diseases. We aimed to review the current applications of and challenges in using DECT in the treatment of liver diseases. The greater contrast provided by low-energy reconstructed images and the capability of iodine quantification have been mostly valuable for lesion detection and characterization, accurate staging, treatment response assessment, and thrombi characterization. Material decomposition techniques allow for the non-invasive quantification of fat/iron deposition and fibrosis. Reduced image quality with larger body sizes, cross-vendor and scanner variability, and long reconstruction time are among the limitations of DECT. Promising techniques for improving image quality with lower radiation dose include the deep learning imaging reconstruction method and novel spectral photon-counting computed tomography.
Collapse
Affiliation(s)
- Ana P Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Filipe Caseiro-Alves
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
28
|
Borges AP, Antunes C, Curvo-Semedo L. Pros and Cons of Dual-Energy CT Systems: "One Does Not Fit All". Tomography 2023; 9:195-216. [PMID: 36828369 PMCID: PMC9964233 DOI: 10.3390/tomography9010017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Dual-energy computed tomography (DECT) uses different energy spectrum x-ray beams for differentiating materials with similar attenuation at a certain energy. Compared with single-energy CT, it provides images with better diagnostic performance and a potential reduction of contrast agent and radiation doses. There are different commercially available DECT technologies, with machines that may display two x-ray sources and two detectors, a single source capable of fast switching between two energy levels, a specialized detector capable of acquiring high- and low-energy data sets, and a filter splitting the beam into high- and low-energy beams at the output. Sequential acquisition at different tube voltages is an alternative approach. This narrative review describes the DECT technique using a Q&A format and visual representations. Physical concepts, parameters influencing image quality, postprocessing methods, applicability in daily routine workflow, and radiation considerations are discussed. Differences between scanners are described, regarding design, image quality variabilities, and their advantages and limitations. Additionally, current clinical applications are listed, and future perspectives for spectral CT imaging are addressed. Acknowledging the strengths and weaknesses of different DECT scanners is important, as these could be adapted to each patient, clinical scenario, and financial capability. This technology is undoubtedly valuable and will certainly keep improving.
Collapse
Affiliation(s)
- Ana P. Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
- Correspondence:
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Luís Curvo-Semedo
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
29
|
Kurz FT, Schlemmer HP. Imaging in translational cancer research. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0677. [PMID: 36476372 PMCID: PMC9724222 DOI: 10.20892/j.issn.2095-3941.2022.0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
This review is aimed at presenting some of the recent developments in translational cancer imaging research, with a focus on novel, recently established, or soon to be established cross-sectional imaging techniques for computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET) imaging, including computational investigations based on machine-learning techniques.
Collapse
Affiliation(s)
- Felix T. Kurz
- Department of Radiology, German Cancer Research Center, Heidelberg 69120, Germany
| | | |
Collapse
|