1
|
Zhou H, He Z, Cao Y, Chu L, Liang B, Yu K, Deng Z. An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation. Theranostics 2024; 14:3739-3759. [PMID: 38948054 PMCID: PMC11209720 DOI: 10.7150/thno.97412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Background: The repair of osteoporotic bone defects remains challenging due to excessive reactive oxygen species (ROS), persistent inflammation, and an imbalance between osteogenesis and osteoclastogenesis. Methods: Here, an injectable H2-releasing hydrogel (magnesium@polyethylene glycol-poly(lactic-co-glycolic acid), Mg@PEG-PLGA) was developed to remodel the challenging bone environment and accelerate the repair of osteoporotic bone defects. Results: This Mg@PEG-PLGA gel shows excellent injectability, shape adaptability, and phase-transition ability, can fill irregular bone defect areas via minimally invasive injection, and can transform into a porous scaffold in situ to provide mechanical support. With the appropriate release of H2 and magnesium ions, the 2Mg@PEG-PLGA gel (loaded with 2 mg of Mg) displayed significant immunomodulatory effects through reducing intracellular ROS, guiding macrophage polarization toward the M2 phenotype, and inhibiting the IκB/NF-κB signaling pathway. Moreover, in vitro experiments showed that the 2Mg@PEG-PLGA gel inhibited osteoclastogenesis while promoting osteogenesis. Most notably, in animal experiments, the 2Mg@PEG-PLGA gel significantly promoted the repair of osteoporotic bone defects in vivo by scavenging ROS and inhibiting inflammation and osteoclastogenesis. Conclusions: Overall, our study provides critical insight into the design and development of H2-releasing magnesium-based hydrogels as potential implants for repairing osteoporotic bone defects.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
- Department of Ultrasound & Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhongyuan He
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
| | - Youde Cao
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing 400016, P. R. China
| | - Lei Chu
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
| | - Bing Liang
- Department of Pathology from College of Basic Medicine, and Molecular Medicine Diagnostic & Testing Center, and Department of Clinical Pathology Laboratory of Pathology Diagnostic Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing 400016, P. R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, The First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing 400021, P. R. China
| | - Zhongliang Deng
- Department of Orthopaedics, the Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, P. R. China
| |
Collapse
|
2
|
Gani LU, Sritara C, Blank RD, Chen W, Gilmour J, Dhaliwal R, Gill R. Follow-up Bone Mineral Density Testing: 2023 Official Positions of the International Society for Clinical Densitometry. J Clin Densitom 2024; 27:101440. [PMID: 38007875 DOI: 10.1016/j.jocd.2023.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Dual-energy X-ray absorptiometry (DXA) is the gold standard method for measuring bone mineral density (BMD) which is most strongly associated with fracture risk. BMD is therefore the basis for the World Health Organization's densitometric definition of osteoporosis. The International Society for Clinical Densitometry (ISCD) promotes best densitometry practices and its official positions reflect critical review of current evidence by domain experts. This document reports new official positions regarding follow-up DXA examinations based on a systematic review of literature published through December 2022. Adoption of official positions requires consensus agreement from an expert panel following a modified RAND protocol. Unless explicitly altered by the new position statements, prior ISCD official positions remain in force. This update reflects increased consideration of the clinical context prompting repeat examination. Follow-up DXA should be performed with pre-defined objectives when the results would have an impact on patient management. Testing intervals should be individualized according to the patient's age, sex, fracture risk and treatment history. Incident fractures and therapeutic approach are key considerations. Appropriately ordered and interpreted follow-up DXA examinations support diagnostic and therapeutic decision making, thereby contributing to excellent clinical care. Future research should address the complementary roles of clinical findings, imaging and laboratory testing to guide management.
Collapse
Affiliation(s)
- Linsey U Gani
- Department of Endocrinology, Changi General Hospital, Singapore.
| | - Chanika Sritara
- Nuclear Medicine Division, Department of Diagnostic and Therapeutic Radiology. Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - WeiWen Chen
- Department of Endocrinology, St Vincent's Hospital Sydney, Australia
| | - Julia Gilmour
- Division of Endocrinology, St Michael's Hospital, Department of Medicine, University of Toronto
| | - Ruban Dhaliwal
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School
| | - Ranjodh Gill
- Department of Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
3
|
Li J, Viceconti M, Li X, Bhattacharya P, Naimark DMJ, Osseyran A. Cost-Effectiveness Analysis of CT-Based Finite Element Modeling for Osteoporosis Screening in Secondary Fracture Prevention: An Early Health Technology Assessment in the Netherlands. MDM Policy Pract 2023; 8:23814683231202993. [PMID: 37900721 PMCID: PMC10605708 DOI: 10.1177/23814683231202993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/20/2023] [Indexed: 10/31/2023] Open
Abstract
Objective. To conduct cost-utility analyses for Computed Tomography To Strength (CT2S), a novel osteoporosis screening service, compared with dual-energy X-ray absorptiometry (DXA), treat all without screening, and no screening methods for Dutch postmenopausal women referred to fracture liaison service (FLS). CT2S uses CT scans to generate femur models and simulate sideways fall scenarios for bone strength assessment. Methods. Early health technology assessment (HTA) was adopted to evaluate CT2S as a novel osteoporosis screening tool for secondary fracture prevention. We constructed a 2-dimensional simulation model considering 4 strategies (no screening, treat all without screening, DXA, CT2S) together with screening intervals (5 y, 2 y), treatments (oral alendronate, zoledronic acid), and discount rate scenarios among Dutch women in 3 age groups (60s, 70s, and 80s). Strategy comparisons were based on incremental cost-effectiveness ratios (ICERs), considering an ICER below €20,000 per QALY gained as cost-effective in the Netherlands. Results. Under the base-case scenario, CT2S versus DXA had estimated ICERs of €41,200 and €14,083 per QALY gained for the 60s and 70s age groups, respectively. For the 80s age group, CT2S was more effective and less costly than DXA. Changing treatment from weekly oral alendronate to annual zoledronic acid substantially decreased CT2S versus DXA ICERs across all age groups. Setting the screening interval to 2 y increased CT2S versus DXA ICERs to €100,333, €55,571, and €15,750 per QALY gained for the 60s, 70s, and 80s age groups, respectively. In all simulated populations and scenarios, CT2S was cost-effective (in some cases dominant) compared with the treat all strategy and cost-saving (more effective and less costly) compared with no screening. Conclusion. CT2S was estimated to be potentially cost-effective in the 70s and 80s age groups considering the willingness-to-pay threshold of the Netherlands. This early HTA suggests CT2S as a potential novel osteoporosis screening tool for secondary fracture prevention. Highlights For postmenopausal Dutch women who have been referred to the FLS, direct access to CT2S may be cost-effective compared with DXA for age groups 70s and 80s, when considering the ICER threshold of the Netherlands. This study positions CT2S as a potential novel osteoporosis-screening tool for secondary fracture prevention in the clinical setting.A shorter screening interval of 2 y increases the effectiveness of both screening strategies, but the ICER of CT2S compared with DXA also increased substantially, which made CT2S no longer cost-effective for the 70s age group; however, it remains cost-effective for individuals in their 80s.Annual zoledronic acid treatment with better adherence may contribute to a lower cost-effectiveness ratio when comparing CT2S to DXA screening and the treat all strategies for all age groups.
Collapse
Affiliation(s)
- Jieyi Li
- Amsterdam Business School, University of Amsterdam, Amsterdam, Netherland
| | - Marco Viceconti
- Department of Industrial Engineering, University of Bologna, Bologna, Italy
| | - Xinshan Li
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Pinaki Bhattacharya
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - David M. J. Naimark
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Anwar Osseyran
- Amsterdam Business School, University of Amsterdam, Amsterdam, Netherland
| |
Collapse
|
4
|
Leslie WD, Morin SN, Lix LM, Martineau P, Bryanton M, McCloskey EV, Johansson H, Harvey NC, Kanis JA. Reassessment Intervals for Transition From Low to High Fracture Risk Among Adults Older Than 50 Years. JAMA Netw Open 2020; 3:e1918954. [PMID: 31922559 PMCID: PMC6991318 DOI: 10.1001/jamanetworkopen.2019.18954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
IMPORTANCE Fracture risk scores are used to identify individuals at high risk of major osteoporotic fracture or hip fracture for antiosteoporosis treatment. For those not meeting treatment thresholds at baseline, the optimal interval for reassessing fracture risk is uncertain. OBJECTIVE To examine reassessment intervals for transition from low to high fracture risk under guidelines-defined treatment thresholds. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included persons aged 50 years or older with fracture risk below treatment thresholds at baseline who had fracture risk reassessed at least 1 year later. Data were obtained from a population-based bone mineral density registry (baseline assessment during 1996-2015; reassessment to 2016) in the Province of Manitoba, Canada. Primary analysis was performed from May to June 2019. Analysis for the revision was performed in October 2019. MAIN OUTCOMES AND MEASURES The primary outcome was time to transition from low (below the treatment threshold) to high fracture risk (treatment-qualifying risk score using osteoporosis clinical practice guidelines strategies for Canada, the United States, and the United Kingdom). RESULTS The study population consisted of 10 564 individuals (94.1% women; mean [SD] age at baseline, 63.2 [8.2] years). At the time of reassessment (a mean [SD] interval of 5.2 [2.9] years between initial and subsequent fracture risk assessment), 690 (6.6%) had reached the fixed major osteoporotic fracture treatment threshold of 20%, 1546 (16.2%) had reached the fixed hip treatment threshold of 3%, and 932 (9.4%) had reached the age-dependent major osteoporotic fracture treatment threshold. Among those below 25% of the treatment threshold at baseline for each guideline, few (0%-3.0%) reached guidelines-defined high fracture risk at follow-up. In contrast, among those at the upper end of the scale for each guideline (75%-99% of the treatment threshold at baseline), 30.6% to 74.4% reached guidelines-defined high fracture risk. An increased number of clinical risk factors was associated with increased likelihood of reaching guidelines-defined high fracture risk (range for 3 guidelines, 17.1%-28.2%) compared with unchanged or decreased clinical risk factors (range for 3 guidelines, 3.3%-12.8%) (P < .001). Estimated time for 10% of the population to reach treatment-qualifying high fracture risk ranged from fewer than 3 years to more than 15 years. CONCLUSIONS AND RELEVANCE The findings suggest that baseline fracture risk (as a fraction of the treatment threshold) and change in clinical risk factors can identify individuals with low and high probability of guidelines-defined high fracture risk during follow-up, thereby potentially helping to inform the reassessment interval.
Collapse
Affiliation(s)
- William D. Leslie
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Suzanne N. Morin
- Division of General Internal Medicine, McGill University, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Lisa M. Lix
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patrick Martineau
- Section of Nuclear Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Harvard Medical School, Boston, Massachusetts
| | - Mark Bryanton
- Section of Nuclear Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eugene V. McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Helena Johansson
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, United Kingdom
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Nicholas C. Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - John A. Kanis
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, United Kingdom
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
5
|
Kendler DL, Compston J, Carey JJ, Wu CH, Ibrahim A, Lewiecki EM. Repeating Measurement of Bone Mineral Density when Monitoring with Dual-energy X-ray Absorptiometry: 2019 ISCD Official Position. J Clin Densitom 2019; 22:489-500. [PMID: 31378452 DOI: 10.1016/j.jocd.2019.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/03/2023]
Abstract
Bone mineral density (BMD) can be measured at multiple skeletal sites using various technologies to aid clinical decision-making in bone and mineral disorders. BMD by dual-energy X-ray absorptiometry (DXA) has a critical role in predicting risk of fracture, diagnosis of osteoporosis, and monitoring patients. In clinical practice, DXA remains the most available and best validated tool for monitoring patients. A quality baseline DXA scan is essential for comparison with all subsequent scans. Monitoring patients with serial measurements requires technical expertise and knowledge of the least significant change in order to determine when follow-up scans should be repeated. Prior ISCD Official Positions have clarified how and when repeat DXA is useful as well as the interpretation of results. The 2019 ISCD Official Positions considered new evidence and clarifies if and when BMD should be repeated. There is good evidence showing that repeat BMD measurement can identify people who experience bone loss, which is an independent predictor of fracture risk. There is good evidence showing that the reduction in spine and hip fractures with osteoporosis medication is proportional to the change in BMD with treatment. There is evidence that measuring BMD is useful following discontinuation of osteoporosis treatment. There is less documentation addressing the effectiveness of monitoring BMD to improve medication adherence, whether monitoring of BMD reduces the risk of fracture, or effectively discriminates patients who should and should not recommence treatment following an interruption of medication. Further research is needed in all of these areas.
Collapse
Affiliation(s)
- David L Kendler
- Department of Medicine, University of British Columbia, Vancouver, Canada.
| | - Juliet Compston
- Department of Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John J Carey
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Chih-Hsing Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ammar Ibrahim
- School of Medicine, National University of Ireland, Galway, Ireland
| | - E Michael Lewiecki
- New Mexico Clinical Research and Osteoporosis Center, Albuquerque, NM, USA
| |
Collapse
|
6
|
Lyu H, Yoshida K, Tedeschi SK, Zhao S, Xu C, Nigwekar SU, Leder BZ, Solomon DH. Intervals between bone mineral density testing with dual-energy X-ray absorptiometry scans in clinical practice. Osteoporos Int 2019; 30:923-927. [PMID: 30680429 PMCID: PMC6499657 DOI: 10.1007/s00198-019-04847-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/06/2019] [Indexed: 11/28/2022]
Abstract
Intervals between dual-energy X-ray absorptiometry (DXA) scans were evaluated in a large cohort of typical clinical practice. Intensive DXA scanning (intervals < 23 months) decreased substantially, from 16.7% in 2006 to 6.7% in 2015. INTRODUCTION Serial dual-energy X-ray absorptiometry (DXA) measurements are suggested for patients at high risk of fractures. However, little is known about how often DXA testing occurs in clinical practice. METHODS We examined time intervals between DXA testing for monitoring purpose at two academic medical centers in the US between 2004 and 2017. The primary outcome was the presence of testing intervals < 23 months (termed "intensive DXA testing"). A generalized linear mixed model was used to evaluate the association between selected patient-level clinical factors and intensive DXA testing. RESULTS Forty-nine thousand four hundred ninety-four DXA tests from 20,200 patients were analyzed. The mean time interval between scans was 36 ± 21 months. Only 11.1% of the repeated DXA testing met the criterion for intensive testing. The percentage of intensive DXA testing dropped from 16.7% in 2006 to 6.7% in 2015 (p for trend < 0.001). After adjusting for age, gender, number of outpatient visits, and calendar year, correlates of intensive DXA testing included a baseline T-score < -2.5 at any anatomic site (OR, 4.8; 95%CI, 4.0-5.7), active use of drugs for osteoporosis (OR, 1.6; 95%CI, 1.3-1.9), and active use of glucocorticoids (OR, 1.3; 95%CI, 1.2-1.4). CONCLUSIONS The predictors of intensive DXA testing suggest that this practice is used preferentially in patients with multiple risk factors and to monitor the response to pharmacotherapy. However, intensive DXA testing has become less common in real-world clinical practice over the last decade. Further studies are required to better define the optimal use of bone mineral density testing in this vulnerable population.
Collapse
Affiliation(s)
- H Lyu
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - K Yoshida
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - S K Tedeschi
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| | - S Zhao
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - C Xu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA
| | - S U Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - B Z Leder
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - D H Solomon
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Irrational Exuberance in Medicine. J Gen Intern Med 2017; 32:1065-1066. [PMID: 28752359 PMCID: PMC5602777 DOI: 10.1007/s11606-017-4142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Johnson KM. Capsule Commentary on VanGompel et al., Incidence and Predictors of Repeat Bone Mineral Densitometry: A Longitudinal Cohort Study. J Gen Intern Med 2017; 32:1131. [PMID: 28752358 PMCID: PMC5602774 DOI: 10.1007/s11606-017-4132-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Kay M Johnson
- Division of General Internal Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- VA Puget Sound Health Care System, Seattle, WA, USA.
| |
Collapse
|