1
|
Wang Y, Lei T, Wei L, Du S, Girani L, Deng S. Xenotransplantation in China: Present status. Xenotransplantation 2019; 26:e12490. [PMID: 30740782 DOI: 10.1111/xen.12490] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2019] [Indexed: 12/16/2022]
Abstract
The main obstacle to organ transplantation is the shortage of organs from deceased individuals. Especially in China, the ratio of patients on the waiting list versus the transplant recipients is 30:1. Therefore, there is an urgent need for organ donors. Genetically modified pig organs have proved to be a new source for xenotransplantation, and Chinese scientists have made considerable progress in this area during recent years. In this paper, we review four important aspects of the xenotransplantation field in China. First, a large variety of genetically modified pigs have been generated by Chinese scientists: all these genetically modified pigs and the purpose of these modifications will be summarized. Second, the preclinical research in pig-to-nonhuman primate xenotransplantation is outlined. The survival time and major biochemical parameters for the xenografts are summarized. Third, regarding the bench-to-bed approach, more suitable organs have been developed for xenotransplantation in humans, and in particular, pig islet transplantation into diabetic patients as well as pig-to-human cornea and skin transplantation. Fourth, we briefly address the regulations and prospects for recruiting xenotransplantation experts in China. Based on recent progress, we anticipate that genetically modified pigs will offer suitable organs for the treatment of end-stage organ diseases in humans in the near future. Given the recent influx of world-renowned scientists in xenotransplantation to China, our country will definitely become one of the major centers of xenotransplantation research and development in the world.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Tiantian Lei
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Wei
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Suya Du
- Department of Pharmacy, Chengdu Military General Hospital, Chengdu, China
| | - Lea Girani
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Shaoping Deng
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
2
|
Air pollutant particulate matter 2.5 induces dry eye syndrome in mice. Sci Rep 2018; 8:17828. [PMID: 30546125 PMCID: PMC6292905 DOI: 10.1038/s41598-018-36181-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/02/2017] [Indexed: 01/23/2023] Open
Abstract
In this study, we explored the effects of particulate matter 2.5 (PM2.5) eye drops on the ocular surface structure and tear function in mice and established a novel animal model for dry eye research. We found that, following treatment with PM2.5, the tear volume and, the tear film break-up time showed statistical differences at each time point (P < 0.05). The FL score of the PM2.5-treated group was higher than that of others (P < 0.05). The average number of corneal epithelial layer cells in groups A and B was significantly lower than that in group C (P < 0.05). Scanning electron microscopy and transmission electron microscopy revealed that the number of corneal epithelial microvilli and corneal desmosomes was drastically reduced in group C. PM2.5 induced apoptosis in the corneal superficial and basal epithelium and led to abnormal differentiation and proliferation of the ocular surface with higher expression levels of Ki67 and a reduced number of goblet cells in the conjunctival fornix in group C. PM2.5 significantly increased the levels of TNF-α, NF-κB p65 (phospho S536), and NF-κB in the cornea. Thus, the topical administration of PM2.5 in mice induces ocular surface changes that are similar to those of dry eye in humans, representing a novel model of dry eye.
Collapse
|
3
|
Li J, Tan G, Ding X, Wang Y, Wu A, Yang Q, Ye L, Shao Y. A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10. Biomed Pharmacother 2017; 96:524-534. [PMID: 29032336 DOI: 10.1016/j.biopha.2017.10.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
AIM To introduce a novel dry eye mouse model induced by topical administration of the air pollutant particulate matter 10 (PM10). METHOD A total of 60 male BALB/c mice were used in this study and divided into two groups: group A (PBS eye drops, n=30) and group B (PM10 eye drop group, n=30). Each treatment was dosed four times a day, every time 50ul with the concentration of 5mg/ml PM10, for 14 consecutive days in the right eye. The clinical manifestations of dry eye were measured before therapy and 4, 7 and 14days post-treatment respectively, which included the tear volume, tear break-up (BUT) time, corneal fluorescein staining, rose bengal staining, Lissamine Green staining and inflammatory index. Eye samples were collected on D14 and examined by histologic light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), corneal cytokeration 10 (K10) immunnostaining, and tumor necrosis factor-α (TNF-α), NF-κB-p65 and NF-κB Western Blot analysis. RESULTS At 0d, 7d and 14d, there were no statistical changes in tear volume, BUT after treatment (P>0.05) with PBS in group A. In group B, all items showed statistical differences at each time point (P<0.05). At 14d after therapy, the fluorescein staining score of group B was higher than group A (P<0.05). The score of rose bengal staining and Lissamine Green staining in group B was also higher than that in group A (P<0.05). The number of mean layers of corneal epithelial cells in the group A was significantly lower than that in the group B (P<0.05). TEM and SEM revealed that the number of corneal epithelial microvilli were drastically reduced in group B. The number of corneal chondriosome/desmosomes was also reduced in group B by TEM. PM10 induced apoptosis in the superficial and basal corneal epithelium, and leaded to abnormal differentiation and proliferation of the ocular surface with higher expression levels of K10 and reduced number of goblet cells in the conjunctival fornix in group B. PM10 significantly increased the levels of TNF-α, NF-κB-p65 and NF-κB in the cornea. CONCLUSION PM10 can damage the tear film function and cause the destruction of the structural organization of ocular surface in mice. Topical administration of PM10 in mice induces ocular surface changes that are similar to those of dry eye in humans, representing a novel model of DES.
Collapse
Affiliation(s)
- Juan Li
- Department of Ophthalmology, the Fourth Hospital of Xi'an, Xi'an 710004, Shaanxi Province, China
| | - Gang Tan
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, Henyang 421000, Hunan Province, China
| | - Xiaoyan Ding
- Department of Ophthalmology, the Second Hospital of Xi'an, Xi'an 710003, Shaanxi Province, China
| | - Yahong Wang
- Environmental Monitoring Station of Xi'an City, Xi'an 710054, Shaanxi Province, China
| | - Anhua Wu
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Henyang 421000, Hunan Province, China
| | - Qichen Yang
- Eye Institute of Xiamen University, Xiamen 361102, Fujian Province, China
| | - Lei Ye
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
Huang X, Han Y, Shao Y, Yi JL. Efficacy of the nucleotide-binding oligomerzation domain 1 inhibitor Nodinhibit-1 on corneal alkali burns in rats. Int J Ophthalmol 2015; 8:860-5. [PMID: 26558192 DOI: 10.3980/j.issn.2222-3959.2015.05.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 03/10/2015] [Indexed: 12/17/2022] Open
Abstract
AIM To evaluate the therapeutic effect of Nodinhibit-1 on alkali-burn-induced corneal neovascularization (CNV) and inflammation. The nucleotide-binding oligomerzation domain 1 (NOD1) is a potent angiogenic gene. METHODS The alkali-burned rat corneas (32 right eyes) were treated with eye drops containing Nodinhibit-1 or phosphate buffered solution (PBS, PH 7.4) only, four times per day. CNV and inflammation were monitored using slit lamp microscopy, and the area of CNV was measured by formula. Vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF) was determined by Western blot analysis. The TUNEL assay was used to assess the corneal apoptosis cells. RESULTS Alkali-burn-induced progressive CNV and inflammation in the cornea. After treatment for 7d and 14d, there were statistically significant differences in the CNV areas and inflammatory index on that between two group(P<0.05, respectively). Epithelial defect quantification showed a significant difference between the two groups at days 4 and 7 after the alkali burns (P<0.05). The apoptotic cells on days 1, 4, and 7 between the two groups showed significant differences at all time points (P<0.05, respectively). Compared to that in control group, the protein level of VEGF expression was significantly reduced whereas the PEDF expression was increase in the Nodinhibit-1 groups on day 14 (P<0.05, respectively). CONCLUSION Topical application of 10.0 µg/mL Nodinhibit-1 may have potential effect for the alkali burn-induced CNV and inflammation. The effect of Nodinhibit-1 on CNV may be by regulation the equilibrium of VEGF and PEDF in the wounded cornea.
Collapse
Affiliation(s)
- Xu Huang
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yun Han
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen 361102, Fujian Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jing-Lin Yi
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
5
|
Alio del Barrio JL, Chiesa M, Garagorri N, Garcia-Urquia N, Fernandez-Delgado J, Bataille L, Rodriguez A, Arnalich-Montiel F, Zarnowski T, Álvarez de Toledo JP, Alio JL, De Miguel MP. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Exp Eye Res 2015; 132:91-100. [DOI: 10.1016/j.exer.2015.01.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/04/2014] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
|
6
|
Diao JM, Pang X, Qiu Y, Miao Y, Yu MM, Fan TJ. Construction of a human corneal stromal equivalent with non-transfected human corneal stromal cells and acellular porcine corneal stromata. Exp Eye Res 2015; 132:216-24. [DOI: 10.1016/j.exer.2015.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 01/28/2023]
|
7
|
Shao C, Chen J, Chen P, Zhu M, Yao Q, Gu P, Fu Y, Fan X. Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev 2014; 24:756-67. [PMID: 25315152 DOI: 10.1089/scd.2014.0255] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal endothelial dysfunction involves progressive corneal edema and loss of visual acuity, which result in the need for corneal transplantation. The global shortage of donor corneas limits the development of the surgery. Reconstruction of a bioengineered corneal endothelium might resolve this problem. Various scaffolds have been used, but poor biocompatibility and degradation limit their applications. In this study, a novel method of targeted cellular transplantation without permanent residence of cell carriers in the host was proposed. Human umbilical cord blood endothelial progenitor cells (UCB EPCs) were labeled with CD34 immunomagnetic nanoparticles. The efficiency of the magnet attraction was evaluated in vitro with a simple device simulating the anterior chamber. The UCB EPCs labeled with nanoparticles were transplanted into the anterior chamber of rabbits with magnet attraction. The results indicated that labeling the nanoparticles did not affect the proliferation of the UCB EPCs. The in vitro study indicated that the magnet could directionally attract UCB EPCs labeled with nanoparticles. The in vivo study indicated that the corneas in rabbits transplanted with UCB EPCs labeled with nanoparticles and magnet attraction became relatively transparent with little edema. These results showed that UCB EPCs labeled with CD34 immunomagnetic nanoparticles could be attracted directionally by a magnet and could repair corneal endothelial defects, providing a promising cell therapy for corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Chunyi Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee W, Miyagawa Y, Long C, Cooper DKC, Hara H. A comparison of three methods of decellularization of pig corneas to reduce immunogenicity. Int J Ophthalmol 2014; 7:587-93. [PMID: 25161926 DOI: 10.3980/j.issn.2222-3959.2014.04.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/30/2014] [Indexed: 12/24/2022] Open
Abstract
AIM To investigate whether decellularization using different techniques can reduce immunogenicity of the cornea, and to explore the decellularized cornea as a scaffold for cultured corneal endothelial cells (CECs). Transplantation of decellularized porcine corneas increases graft transparency and survival for longer periods compared with fresh grafts. METHODS Six-month-old wild-type pig corneas were cut into 100-200 µm thickness, and then decellularized by three different methods: 1) 0.1% sodium dodecyl sulfate (SDS); 2) hypoxic nitrogen (N2); and 3) hypertonic NaCl. Thickness and transparency were assessed visually. Fresh and decellularized corneas were stained with hematoxylin/eosin (H&E), and for the presence of galactose-α1,3-galactose (Gal) and N-glycolylneuraminic acid (NeuGc, a nonGal antigen). Also, a human IgM/IgG binding assay was performed. Cultured porcine CECs were seeded on the surface of the decellularized cornea and examined after H&E staining. RESULTS All three methods of decellularization reduced the number of keratocytes in the stromal tissue by >80% while the collagen structure remained preserved. No remaining nuclei stained positive for Gal or NeuGc, and expression of these oligosaccharides on collagen was also greatly decreased compared to expression on fresh corneas. Human IgM/IgG binding to decellularized corneal tissue was considerably reduced compared to fresh corneal tissue. The cultured CECs formed a confluent monolayer on the surface of decellularized tissue. CONCLUSION Though incomplete, the significant reduction in the cellular component of the decellularized cornea should be associated with a significantly reduced in vivo immune response compared to fresh corneas.
Collapse
Affiliation(s)
- Whayoung Lee
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuko Miyagawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cassandra Long
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David K C Cooper
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hidetaka Hara
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Keeping an eye on decellularized corneas: a review of methods, characterization and applications. J Funct Biomater 2013; 4:114-61. [PMID: 24956084 PMCID: PMC4030906 DOI: 10.3390/jfb4030114] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/08/2013] [Accepted: 05/28/2013] [Indexed: 12/13/2022] Open
Abstract
The worldwide limited availability of suitable corneal donor tissue has led to the development of alternatives, including keratoprostheses (Kpros) and tissue engineered (TE) constructs. Despite advances in bioscaffold design, there is yet to be a corneal equivalent that effectively mimics both the native tissue ultrastructure and biomechanical properties. Human decellularized corneas (DCs) could offer a safe, sustainable source of corneal tissue, increasing the donor pool and potentially reducing the risk of immune rejection after corneal graft surgery. Appropriate, human-specific, decellularization techniques and high-resolution, non-destructive analysis systems are required to ensure reproducible outputs can be achieved. If robust treatment and characterization processes can be developed, DCs could offer a supplement to the donor corneal pool, alongside superior cell culture systems for pharmacology, toxicology and drug discovery studies.
Collapse
|
10
|
Lynch AP, Ahearne M. Strategies for developing decellularized corneal scaffolds. Exp Eye Res 2012; 108:42-7. [PMID: 23287438 DOI: 10.1016/j.exer.2012.12.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/01/2022]
Abstract
The main obstacle to successfully engineering corneal tissue has been the replication of the structural and biochemical composition of native cornea in a scaffold. In recent years decellularized corneas have been under investigation as an alternative scaffold source for use in engineering cornea. Several strategies for lysing cells and removing cellular material from corneas are discussed. The removal of such cellular components and antigen molecules whilst maintaining the corneal extracellular matrix components and architecture is required to generate scaffolds capable of generating functional tissue grafts suitable for transplantation. Different techniques to ascertain the degree of decellularization and the change in structural, mechanical and biological characteristics of the corneas after treatment are examined. In addition several in vitro and in vivo studies have been performed to ascertain the suitability of decellularized corneas as a scaffold for restoring vision.
Collapse
Affiliation(s)
- Amy P Lynch
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
11
|
Shao Y, Yu Y, Pei CG, Zhou Q, Liu QP, Tan G, Li JM, Gao GP, Yang L. Evaluation of novel decellularizing corneal stroma for cornea tissue engineering applications. Int J Ophthalmol 2012; 5:415-8. [PMID: 22937497 DOI: 10.3980/j.issn.2222-3959.2012.04.02] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/17/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To develop a new decellularization method depended upon the natural corneal structure and to harvest an ideal scaffold with good biocompatibilities for corneal reconstruction. METHODS The acellular cornea matrix (ACM) were prepared from de-epithelium fresh porcine corneas (DFPCs) by incubation with 100% fresh human sera and additional electrophoresis at 4°C. Human corneal epithelial cells (HCEs) were used for the cytotoxicity tests of ACM. ACM were implanted into the Enhanced Green Fluorecence Protein (eGFP) transgenic mouse anterior chamber for evaluation of histocompatibility. RESULTS HE and GSIB4 results showed fresh porcine cornea matrix with 100% human sera and electrophoresis could entirely decellularize stromal cell without reducing its transparency. ACM had no cytotoxic effect ex vivo. Animal test showed there was no rejection for one month after surgery. CONCLUSION These results provide a decellularizing approach for the study of corneal tissue engineering and had the broader implications for the field of biological tissue engineering in other engineered organ or tissue matrix.
Collapse
Affiliation(s)
- Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|