1
|
Sun DD, Li XQ, Liu YT, Ge MQ, Hou ZC. The Application of Duck Embryonic Fibroblasts CCL-141 as a Cell Model for Adipogenesis. Animals (Basel) 2024; 14:2973. [PMID: 39457903 PMCID: PMC11503743 DOI: 10.3390/ani14202973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The duck embryo fibroblast cell line CCL-141, which is currently the only commercialized duck cell line, has been underexplored in adipogenesis research. (1) Background: This study establishes an experimental protocol to induce adipogenesis in CCL-141 cells, addressing the importance of understanding gene functions in this process. (2) Methods: Chicken serum, fatty acids, insulin, and all-trans retinoic acid were used to treat CCL-141 cells, with adipogenesis confirmed by Oil Red O staining and gene expression quantification. CRISPR/Cas9 technology was applied to knockout PPARγ, and the resulting adipogenic phenotype was assessed. (3) Results: The treatments promoted adipogenesis, and the knockout of PPARγ validated the cell line's utility for gene function studies. (4) Conclusions: CCL-141 cells are a suitable model for investigating duck adipogenesis, contributing to the understanding of regulatory factors in this biological process.
Collapse
Affiliation(s)
- Dan-Dan Sun
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.-D.S.); (X.-Q.L.); (Y.-T.L.); (M.-Q.G.)
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.-D.S.); (X.-Q.L.); (Y.-T.L.); (M.-Q.G.)
| | - Yong-Tong Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.-D.S.); (X.-Q.L.); (Y.-T.L.); (M.-Q.G.)
| | - Meng-Qi Ge
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.-D.S.); (X.-Q.L.); (Y.-T.L.); (M.-Q.G.)
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.-D.S.); (X.-Q.L.); (Y.-T.L.); (M.-Q.G.)
| |
Collapse
|
2
|
Wu M, Maiorano G, Stadnicka K. Protein profiles in the transfected oviductal secreting cells of laying hen (Gallus gallus domesticus). Poult Sci 2024; 103:103305. [PMID: 38198917 PMCID: PMC10792652 DOI: 10.1016/j.psj.2023.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the intensive development of novel biopharming applications, there is a need for the in vitro verification models prior to in vivo testing. Laying hen has been already applied as an animal bioreactor to produce the therapeutical enzyme in a rare disease called lysosomal acid lipase deficiency. In this study, we aimed to verify how the proteome of the transfected oviduct epithelial cells would be affected by genetic nonviral modification with the human exogene. The study was based on a previously developed method to cultivate chicken oviduct epithelial cells (COEC). The typical characteristics of the COEC epithelial cells were retained across the experiments. The mean efficiency of nucleofection ranged from 2.6 to 19.7% depending on the cells' isolation and location in the oviduct (upper, infundibulum site, or magnum). The PCR confirmed the incorporation of human interferon alpha2a (hIFNα2a) exogene into the nucleofected COEC but, the production of hIFNα2a protein did not exceed the detection level in this study. The ovalbumin protein was detected in the nontransfected and transfected COEC, which confirmed the normal secreting functions of the cells subject to modification. Proteomic analysis revealed an increase in abundance of the cell adhesion molecules and collagen molecules after introducing gene under ovalbumin promoter. According to the bioinformatic analyses there was a limited negative impact of transfection on cells, and the normal biochemical pathways were not severely disordered. In conclusion, the observations provide new knowledge about the proteomic profile of the manipulated COEC with regard to the retained normal functionality of the cells, which can be informative for avian biopharma research.
Collapse
Affiliation(s)
- Mengjun Wu
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Katarzyna Stadnicka
- Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-821 Bydgoszcz, Poland.
| |
Collapse
|
3
|
Kim DH, Lee J, Suh Y, Cressman M, Lee K. Research Note: All-trans retinoic acids induce adipogenic differentiation of chicken embryonic fibroblasts and preadipocytes. Poult Sci 2020; 99:7142-7146. [PMID: 33248631 PMCID: PMC7704976 DOI: 10.1016/j.psj.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/26/2023] Open
Abstract
Adipocytes store excess energy in the form of lipids, whereas fat accretion contributes to feed efficiency, meat quality, and female reproduction in poultry. As a metabolite of vitamin A, all-trans retinoic acid (atRA) has been shown to have influence over metabolic functions such as lipid and energy homeostasis, as well as adipogenesis. Although atRA has been known to function as a regulating factor in mammalian adipogenesis, the effects of atRA on adipogenesis has not been studied in chickens. In this study, chicken preadipocytes isolated from leg fat tissues at embryonic day (E) 14 and chicken embryonic fibroblasts (CEF) harvested at E5 were cultured. The preadipocytes and CEF in culture with 10% chicken serum were treated with various concentrations (0 μmol, 100 μmol, or 150 μmol) of supplemented atRA for 48 h. In these cells, cytoplasmic lipid droplet accumulation and mRNA expression for adipogenic genes were analyzed by Oil-Red-O staining and quantitative real-time PCR, respectively. Analysis of the relative amount of Oil-Red-O staining (lipid accumulation) revealed that all 3 variables increased in a dose-dependent manner, in response to increasing atRA supplementation. Genes involved in adipocyte differentiation, fatty acid transport, and triacylglycerol synthesis in both E14 preadipocytes and E5 CEF were upregulated by supplementation of atRA. These data demonstrated that atRA alone promoted adipogenesis of embryonic preadipocytes and fibroblasts in vitro, suggesting that atRA has an influential role in multiple stages of adipogenesis in chicken embryos.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA; The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus 43210, USA
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Michael Cressman
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA; The Ohio State University Interdisciplinary Human Nutrition Program, The Ohio State University, Columbus 43210, USA.
| |
Collapse
|
4
|
Regassa A, Suh M, Datar J, Chen C, Kim WK. Fatty Acids Have Different Adipogenic Differentiation Potentials in Stromal Vascular Cells Isolated from Abdominal Fat in Laying Hens. Lipids 2017; 52:513-522. [PMID: 28523479 DOI: 10.1007/s11745-017-4261-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/02/2017] [Indexed: 11/29/2022]
Abstract
This study was conducted to examine the effects of fatty acids (FA) with/without chicken serum (CS) on the expression of adipogenic transcripts and adipogenesis in chicken stromal vascular cells (SVC). In experiment 1, SVC were grown in DMEM containing 10% FBS (Control) and treated with 300 µM oleic acid (OLA) + FBS, linoleic acid (LNA) + FBS, palmitic acid (PAM) + FBS, or stearic acid (STA) + FBS for 48 h. In experiment 2, cells were grown in DMEM containing 5% CS and treated with 300 µM OLA (CS + OLA), PAM (CS + PAM), STA (CS + STA) or 200 µM LNA (CS + LNA) for 48 h. Adipogenesis was determined using Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity. The proportion of OLA, PAM, or STA was increased (P < 0.05) in SVC grown in either FBS or CS with OLA, PAM or STA. Adipogenesis was induced in FBS + OLA, FBS + LNA, FBS + PAM, FBS + STA, CS + OLA, CS + LNA, CS + PAM, or CS + SAT compared to FBS. GPDH activity was significantly higher in FBS + OLA and FBS + LNA than one in FBS. Compared to FBS, the expression of FABP4 mRNA increased (P < 0.05) in FBS + OLA, FBS + LNA, or FBS + PAM, whereas that of C/EBPα, C/EBPβ, and ATGL increased (P < 0.05) in FBS + OLA or FBS + LNA cells. Expression of FABP4 and C/EBPβ mRNA was higher in CS, CS + OLA, CS + LNA, CS + PAM, or CS + SAT compared with (FBS, whereas the expression of ATGL and C/EBPα was higher in CS, CS + OLA, or CS + LNA than FBS cells. In conclusion, these results showed that FA have different potentials to induce adipogenesis, LNA is the most potent among the tested FA, and these potentials can be improved in the presence of CS.
Collapse
Affiliation(s)
- Alemu Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Miyoung Suh
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Jutika Datar
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA, 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Liu Z, Zheng Q, Zhang X, Lu L. Microarray analysis of genes involved with shell strength in layer shell gland at the early stage of active calcification. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:609-24. [PMID: 25049830 PMCID: PMC4093333 DOI: 10.5713/ajas.2012.12398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/08/2012] [Accepted: 09/15/2012] [Indexed: 01/13/2023]
Abstract
The objective of this study was to get a comprehensive understanding of how genes in chicken shell gland modulate eggshell strength at the early stage of active calcification. Four 32-week old of purebred Xianju hens with consistent high or low shell breakage strength were grouped into two pairs. Using Affymetrix Chicken Array, a whole-transcriptome analysis was performed on hen’s shell gland at 9 h post oviposition. Gene ontology enrichment analysis for differentially expressed (DE) transcripts was performed using the web-based GOEAST, and the validation of DE-transcripts was tested by qRT-PCR. 1,195 DE-transcripts, corresponding to 941 unique genes were identified in hens with strong eggshell compared to weak shell hens. According to gene ontology annotations, there are 77 DE-transcripts encoding ion transporters and secreted extracellular matrix proteins, and at least 26 DE-transcripts related to carbohydrate metabolism or post-translation glycosylation modification; furthermore, there are 88 signaling DE-transcripts. GO term enrichment analysis suggests that some DE-transcripts mediate reproductive hormones or neurotransmitters to affect eggshell quality through a complex suite of biophysical processes. These results reveal some candidate genes involved with eggshell strength at the early stage of active calcification which may facilitate our understanding of regulating mechanisms of eggshell quality.
Collapse
Affiliation(s)
- Zhangguo Liu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| | - Qi Zheng
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| | - Xueyu Zhang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| | - Lizhi Lu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang, 311300, China
| |
Collapse
|
6
|
Broeckx SY, Maes S, Martinello T, Aerts D, Chiers K, Mariën T, Patruno M, Franco-Obregón A, Spaas JH. Equine Epidermis: A Source of Epithelial-Like Stem/Progenitor Cells with In Vitro and In Vivo Regenerative Capacities. Stem Cells Dev 2014; 23:1134-48. [DOI: 10.1089/scd.2013.0203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sarah Y. Broeckx
- Global Stem cell Technology, Meldert-Lummen, Belgium
- Pell Cell Medicals, Opglabbeek, Belgium
| | | | - Tiziana Martinello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | | | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tom Mariën
- Equitom Equine Hospital, Meldert-Lummen, Belgium
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Alfredo Franco-Obregón
- Department of Biomechanics, Swiss Federal Institute of Technology, ETH, Zürich, Switzerland
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jan H. Spaas
- Global Stem cell Technology, Meldert-Lummen, Belgium
- Pell Cell Medicals, Opglabbeek, Belgium
| |
Collapse
|
7
|
Maki S, Kadokawa H. Increased ectopic fat cells in the longitudinal muscularis layer of the oviduct isthmus in obese Japanese Black cows. Anim Sci J 2013; 85:207-12. [PMID: 23981058 DOI: 10.1111/asj.12110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 06/06/2013] [Indexed: 11/29/2022]
Abstract
In obese humans, mesenchymal stem cells differentiate to become ectopic fat cells in muscles. These ectopic fat cells inhibit the contraction of vascular smooth muscles. Stem cells have been recently identified in the human oviduct, a structure important in reproduction. We therefore investigated the number of Oil Red O (ORO)-positive cells in the oviducts of control Japanese Black cows (n = 6; body condition score [BCS], 3.0 on a 5-point scale) compared to those with diet-induced obesity (n = 5; BCS, 4.0). We stained the ampulla and isthmus collected on the second day after ovulation with ORO and then counted the positive cells in each layer in 10 cross-sections of the ampulla or isthmus. The obese group (23.4 ± 3.4 in the 10 sections) had larger numbers of ORO-positive cells in the longitudinal muscularis of the isthmus (P < 0.05) than did the control group (15.0 ± 2.4). ORO-positive cells were also observed in all other layers of the isthmus and ampulla; however, the number of cells in these layers did not differ significantly between obese cows and controls. Whether this observed increase in ORO-positive cells in the oviducts of obese cows affects their reproduction warrants further study.
Collapse
Affiliation(s)
- Sachiko Maki
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | | |
Collapse
|
8
|
Spaas JH, Chiers K, Bussche L, Burvenich C, Van de Walle GR. Stem/progenitor cells in non-lactating versus lactating equine mammary gland. Stem Cells Dev 2012; 21:3055-67. [PMID: 22574831 DOI: 10.1089/scd.2012.0042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation, and involution. Based on the facts that (i) mammary stem/progenitor cells (MaSC) are proposed to be the driving forces behind mammary growth and function and (ii) variation exists between mammalian species with regard to physiological and pathological functioning of this organ, we believe that studying MaSC from different mammals is of great comparative interest. Over the years, important data has been gathered on MaSC of men and mice, although knowledge on MaSC in other mammals remains limited. Therefore, the aim of this work was to isolate and characterize MaSC from the mammary gland of horses. Hereby, our salient findings were that the isolated equine cells met the 2 in vitro hallmark properties of stem cells, namely the ability to self-renew and to differentiate into multiple cell lineages. Moreover, the cells were immunophenotyped using markers for CD29, CD44, CD49f, and Ki67. Finally, we propose the mammosphere assay as a valuable in vitro assay to study MaSC during different physiological phases since it was observed that equine lactating mammary gland contains significantly more mammosphere-initiating cells than the inactive, nonlactating gland (a reflection of MaSC self-renewal) and, moreover, that these spheres were significantly larger in size upon initial cultivation (a reflection of progenitor cell proliferation). Taken together, this study not only extends the current knowledge of mammary gland biology, but also benefits the comparative approach to study and compare MaSC in different mammalian species.
Collapse
Affiliation(s)
- Jan H Spaas
- Department of Comparative Physiology and Biometrics, Ghent University, Merelbeke, Belgium
| | | | | | | | | |
Collapse
|