1
|
Cao H. Bacterial endotoxin lipopolysaccharides regulate gene expression in human colon cancer cells. BMC Res Notes 2023; 16:216. [PMID: 37705049 PMCID: PMC10500902 DOI: 10.1186/s13104-023-06506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
OBJECTIVE Lipopolysaccharide (LPS) is a major cell wall component of gram-negative bacteria. Colon bacteria contribute to LPS which promotes colon cancer metastasis. The objective of this study was to survey the effect of LPS on cell viability and gene expression of 55 molecular targets in human colon cancer cells. RESULTS LPS did not affect the viability of COLO 225 cells under the culture conditions but affected the expression of a number of genes important in inflammatory responses and cancer development. LPS increased TTP family, GLUT family and DGAT1 mRNA levels but decreased DGAT2a and DGAT2b expression in the human colon cancer cells. LPS also increased COX2, CXCL1, ELK1, ICAM1, TNFSF10 and ZFAND5 but decreased BCL2L1, CYP19A1 and E2F1 mRNA levels in the colon cancer cells. These data suggest that LPS has profound effects on gene expression in human colon cancer cells.
Collapse
Affiliation(s)
- Heping Cao
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, LA, 70124, USA.
| |
Collapse
|
2
|
Cao H, Sethumadhavan K. Plant Polyphenol Gossypol Induced Cell Death and Its Association with Gene Expression in Mouse Macrophages. Biomolecules 2023; 13:biom13040624. [PMID: 37189372 DOI: 10.3390/biom13040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Gossypol is a complex plant polyphenol reported to be cytotoxic and anti-inflammatory, but little is known about its effect on gene expression in macrophages. The objective of this study was to explore gossypol’s toxicity and its effect on gene expression involved in the inflammatory response, glucose transport and insulin signaling pathways in mouse macrophages. Mouse RAW264.7 macrophages were treated with multiple concentrations of gossypol for 2–24 h. Gossypol toxicity was estimated by MTT assay and soluble protein content. qPCR analyzed the expression of anti-inflammatory tristetraprolin family (TTP/ZFP36), proinflammatory cytokine, glucose transporter (GLUT) and insulin signaling genes. Cell viability was greatly reduced by gossypol, accompanied with a dramatic reduction in soluble protein content in the cells. Gossypol treatment resulted in an increase in TTP mRNA level by 6–20-fold and increased ZFP36L1, ZFP36L2 and ZFP36L3 mRNA levels by 26–69-fold. Gossypol increased proinflammatory cytokine TNF, COX2, GM-CSF, INFγ and IL12b mRNA levels up to 39–458-fold. Gossypol treatment upregulated mRNA levels of GLUT1, GLUT3 and GLUT4 genes as well as INSR, AKT1, PIK3R1 and LEPR, but not APP genes. This study demonstrated that gossypol induced macrophage death and reduced soluble protein content, which was accompanied with the massive stimulation of anti-inflammatory TTP family and proinflammatory cytokine gene expression, as well as the elevation of gene expression involved in glucose transport and the insulin signaling pathway in mouse macrophages.
Collapse
|
3
|
Cao H, Sethumadhavan K. Identification of Bcl2 as a Stably Expressed qPCR Reference Gene for Human Colon Cancer Cells Treated with Cottonseed-Derived Gossypol and Bioactive Extracts and Bacteria-Derived Lipopolysaccharides. Molecules 2022; 27:molecules27217560. [PMID: 36364387 PMCID: PMC9655230 DOI: 10.3390/molecules27217560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Cottonseed contains many bioactive molecules including plant polyphenols. Cottonseed value might be increased by providing high-value bioactive polyphenols for improving nutrition and health. However, there was a lack of molecular evidence for cottonseed bioactivity in mammalian cells. One widely used method for evaluating the bioactivity of natural products is quantitative real-time-PCR (qPCR). The selection of stably expressed internal reference genes is a crucial task of qPCR assay for data analysis. The rationale for reference gene selection is that a lower standard deviation of the cycle of threshold (Cq) among the treatments indicates a more stable expression of the gene. The objective of this study was to select reference genes in human colon cancer cells (COLO 205) treated with cottonseed-derived gossypol and bioactive extracts along with bacterial endotoxin lipopolysaccharides (LPS). SYBR Green qPCR was used to analyze the mRNA levels of a wide range of biomarkers involved in glucose transport, lipid biosynthesis, inflammatory response, and cancer development. qPCR data (10,560 Cq values) were generated from 55 genes analyzed from 64 treatments with triplicate per treatment for each gene. The data showed that B-cell lymphoma 2 (Bcl2) mRNA was the most stable among the 55 mRNAs analyzed in the human colon cancer cells. Glyceraldehyde 3 phosphate dehydrogenase (Gapdh) and ribosome protein L32 (Rpl32) mRNAs were not good qPCR references for the colon cancer cells. These observations were consistent regardless of the treatment comparison between gossypol and LPS, glanded and glandless seed extracts, seed coat and kernel extracts, or treatment for 8 and 24 h. These results suggest that Bcl2 is a preferable reference gene for qPCR assays in human colon cancer cells treated with cottonseed-derived gossypol and bioactive extracts as well as LPS. The extensive qPCR results firmly support the conclusion that the Bcl2 gene is stably expressed at the mRNA level in the human colon cancer cells regardless of the treatment, suggesting that Bcl2 gene expression is not regulated at the mRNA level but at the post-transcriptional level. These results should facilitate studies designated to evaluate bioactivity on gene expression regulation by cottonseed molecules and other natural and synthetic molecules for nutrition and health uses.
Collapse
|
4
|
Yang Y, Xu X, Jing Z, Ye J, Li H, Li X, Shi L, Chen M, Wang T, Xie B, Tao Y. Genome-Wide Screening and Stability Verification of the Robust Internal Control Genes for RT-qPCR in Filamentous Fungi. J Fungi (Basel) 2022; 8:jof8090952. [PMID: 36135677 PMCID: PMC9504127 DOI: 10.3390/jof8090952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
In real-time quantitative PCR (RT-qPCR), internal control genes (ICGs) are crucial for normalization. This study screened 6 novel ICGs: Pre-mRNA-splicing factor cwc15 (Cwf15); ER associated DnaJ chaperone (DnaJ); E3 ubiquitin-protein ligase NEDD4 (HUL4); ATP-binding cassette, subfamily B (MDR/TAP), member 1 (VAMP); Exosome complex exonuclease DIS3/RRP44 (RNB); V-type H+-transporting ATPase sub-unit A (V-ATP) from the 22-transcriptome data of 8 filamentous fungi. The six novel ICGs are all involved in the basic biological process of cells and share the different transcription levels from high to low. In order to further verify the stability of ICGs candidates, the six novel ICGs as well as three traditional housekeeping genes: β-actin (ACTB); β-tubulin (β-TUB); glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) and the previously screened reference genes: SPRY-domain-containing protein (SPRYp); Ras-2 protein (Ras); Vacuolar protein sorting protein 26 (Vps26) were evaluated by geNorm and NormFinder statistical algorithms. RT-qPCR of 12 ICGs were performed at different developmental stages in Flammulina filiformis and under different treatment conditions in Neurospora crassa. The consistent results of the two algorithms suggested that the novel genes, RNB, V-ATP, and VAMP, showed the highest stability in F. filiformis and N. crassa. RNB, V-ATP, and VAMP have high expression stability and universal applicability and therefore have great potential as ICGs for standardized calculation in filamentous fungi. The results also provide a novel guidance for the screening stable reference genes in RT-qPCR and a wide application in gene expression analysis of filamentous fungi.
Collapse
Affiliation(s)
- Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Ye
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xiaoyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyu Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tengyun Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|
5
|
Cottonseed extracts regulate gene expression in human colon cancer cells. Sci Rep 2022; 12:1039. [PMID: 35058516 PMCID: PMC8776848 DOI: 10.1038/s41598-022-05030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Cotton plant provides economically important fiber and cottonseed, but cottonseed contributes 20% of the crop value. Cottonseed value could be increased by providing high value bioactive compounds and polyphenolic extracts aimed at improving nutrition and preventing diseases because plant polyphenol extracts have been used as medicinal remedy for various diseases. The objective of this study was to investigate the effects of cottonseed extracts on cell viability and gene expression in human colon cancer cells. COLO 225 cells were treated with ethanol extracts from glanded and glandless cottonseed followed by MTT and qPCR assays. Cottonseed extracts showed minor effects on cell viability. qPCR assay analyzed 55 mRNAs involved in several pathways including DGAT, GLUT, TTP, IL, gossypol-regulated and TTP-mediated pathways. Using BCL2 mRNA as the internal reference, qPCR analysis showed minor effects of ethanol extracts from glanded seed coat and kernel and glandless seed coat on mRNA levels in the cells. However, glandless seed kernel extract significantly reduced mRNA levels of many genes involved in glucose transport, lipid biosynthesis and inflammation. The inhibitory effects of glandless kernel extract on gene expression may provide a useful opportunity for improving nutrition and healthcare associated with colon cancer. This in turn may provide the potential of increasing cottonseed value by using ethanol extract as a nutrition/health intervention agent.
Collapse
|
6
|
Cao H, Sethumadhavan K, Wu X, Zeng X. Cottonseed-derived gossypol and ethanol extracts differentially regulate cell viability and VEGF gene expression in mouse macrophages. Sci Rep 2021; 11:15700. [PMID: 34344975 PMCID: PMC8333419 DOI: 10.1038/s41598-021-95248-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/22/2021] [Indexed: 11/22/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays an important role in chronic inflammation associated with several diseases. Many plant extracts have nutritional and healthy benefits by down-regulating VEGF expression, but there was no report on VEGF regulation by cottonseed extracts in any biological system. The objective was to investigate cell viability and VEGF expression regulated by gossypol and ethanol extracts using lipopolysaccharides (LPS) as a control. MTT, qPCR and immunoblotting techniques were used to monitor cell viability, VEGF mRNA and protein levels in mouse RAW264.7 macrophages. Gossypol dramatically reduced macrophage viability but cottonseed extracts and LPS exhibited minor effect on cell viability. VEGFb mRNA levels were approximately 40 fold of VEGFa in the macrophages. Gossypol increased VEGFa and VEGFb mRNA levels up to 27 and 4 fold, respectively, and increased VEGF protein. LPS increased VEGFa mRNA by sixfold but decreased VEGFb mRNA. LPS increased VEGF protein in 2–4 h but decreased in 8–24 h. Glanded seed extracts showed some stimulating effects on VEGF mRNA levels. Glandless seed coat extract showed increased VEGFb mRNA levels but its kernel extract reduced VEGF mRNA levels. This study demonstrated that gossypol and ethanol extracts differentially regulated cell viability and VEGF expression in mouse macrophages.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA.
| | - Kandan Sethumadhavan
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA
| | - Xiaoyu Wu
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA.,School of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Xiaochun Zeng
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA.,Department of Life Science and Environmental Resources, Yichun University, Yichun, 336000, Jiangxi Province, China
| |
Collapse
|
7
|
Cao H, Sethumadhavan K, Cao F, Wang TTY. Gossypol decreased cell viability and down-regulated the expression of a number of genes in human colon cancer cells. Sci Rep 2021; 11:5922. [PMID: 33723275 PMCID: PMC7961146 DOI: 10.1038/s41598-021-84970-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Plant polyphenol gossypol has anticancer activities. This may increase cottonseed value by using gossypol as a health intervention agent. It is necessary to understand its molecular mechanisms before human consumption. The aim was to uncover the effects of gossypol on cell viability and gene expression in cancer cells. In this study, human colon cancer cells (COLO 225) were treated with gossypol. MTT assay showed significant inhibitory effect under high concentration and longtime treatment. We analyzed the expression of 55 genes at the mRNA level in the cells; many of them are regulated by gossypol or ZFP36/TTP in cancer cells. BCL2 mRNA was the most stable among the 55 mRNAs analyzed in human colon cancer cells. GAPDH and RPL32 mRNAs were not good qPCR references for the colon cancer cells. Gossypol decreased the mRNA levels of DGAT, GLUT, TTP, IL families and a number of previously reported genes. In particular, gossypol suppressed the expression of genes coding for CLAUDIN1, ELK1, FAS, GAPDH, IL2, IL8 and ZFAND5 mRNAs, but enhanced the expression of the gene coding for GLUT3 mRNA. The results showed that gossypol inhibited cell survival with decreased expression of a number of genes in the colon cancer cells.
Collapse
Affiliation(s)
- Heping Cao
- grid.507314.40000 0001 0668 8000United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 USA
| | - Kandan Sethumadhavan
- grid.507314.40000 0001 0668 8000United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 USA
| | - Fangping Cao
- grid.66741.320000 0001 1456 856XBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Thomas T. Y. Wang
- grid.508988.4United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, 10300 Baltimore Ave, Beltsville, MD 20705 USA
| |
Collapse
|
8
|
Cao H, Sethumadhavan K, Li K, Boue SM, Anderson RA. Cinnamon Polyphenol Extract and Insulin Regulate Diacylglycerol Acyltransferase Gene Expression in Mouse Adipocytes and Macrophages. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:115-121. [PMID: 30637573 DOI: 10.1007/s11130-018-0709-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cinnamon polyphenol extract (CPE) improves people with insulin resistance. The objective was to investigate CPE and insulin on diacylglycerol acyltransferase (DGAT) gene expression important for lipid biosynthesis and compared it to anti-inflammatory tristetraprolin/zinc finger protein 36 (TTP/ZFP36) gene expression known to be regulated by both agents. Mouse 3T3-L1 adipocytes and RAW264.7 macrophages were treated with insulin and CPE followed by qPCR evaluation of DGAT and TTP mRNA levels. Insulin decreased DGAT1 and DGAT2 mRNA levels in adipocytes but had no effect on DGAT1 and increased DGAT2 mRNA levels 3-fold in macrophages. Insulin increased TTP mRNA levels 3-fold in adipocytes but had no effect in macrophages. CPE effect on DGAT1 gene expression was minimal but increased DGAT2 mRNA levels 2-4 fold in adipocytes and macrophages. CPE increased TTP mRNA levels 2-7 fold in adipocytes and macrophages. We conclude that CPE and insulin exhibited overlapping and independent effects on DGAT and TTP gene expression and suggest that CPE and insulin have profound effects on fat biosynthesis and inflammatory responses.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.
| | - Kandan Sethumadhavan
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Stephen M Boue
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | | |
Collapse
|
9
|
Cao H. Identification of the major diacylglycerol acyltransferase mRNA in mouse adipocytes and macrophages. BMC BIOCHEMISTRY 2018; 19:11. [PMID: 30547742 PMCID: PMC6293574 DOI: 10.1186/s12858-018-0103-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023]
Abstract
Background Triacylglycerols (TAGs) are the major form of energy storage in eukaryotes. Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of TAG biosynthesis. Mammalian DGATs are classified into DGAT1 and DGAT2 subfamilies. It was unclear which DGAT was the major isoform expressed in animal cells. The objective was to identify the major DGAT mRNA expressed in cultured mouse adipocytes and macrophages and compared it to that expressed in tung tree seeds. Methods qPCR evaluated DGAT mRNA levels in mouse 3 T3-L1 adipocytes and RAW264.7 macrophages and tung tree seeds. Results TaqMan qPCR showed that DGAT2 mRNA levels were 10–30 fold higher than DGAT1 in adipocytes and macrophages, and DGAT mRNA levels in adipocytes were 50–100-fold higher than those in macrophages. In contrast, the anti-inflammatory tristetraprolin/zinc finger protein 36 (TTP/ZFP36) mRNA levels were 2–4-fold higher in macrophages than those in adipocytes and similar to DGAT1 in adipocytes but 100-fold higher than DGAT1 in macrophages. SYBR Green qPCR analyses confirmed TaqMan qPCR results. DGAT2 mRNA as the major DGAT mRNA in the mouse cells was similar to that in tung tree seeds where DGAT2 mRNA levels were 10–20-fold higher than DGAT1 or DGAT3. Conclusion The results demonstrated that DGAT2 mRNA was the major form of DGAT mRNA expressed in mouse adipocytes and macrophages and tung tree seeds.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA.
| |
Collapse
|
10
|
Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes. PLoS One 2015; 10:e0136443. [PMID: 26291709 PMCID: PMC4546295 DOI: 10.1371/journal.pone.0136443] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes.
Collapse
|
11
|
Bollmann F, Wu Z, Oelze M, Siuda D, Xia N, Henke J, Daiber A, Li H, Stumpo DJ, Blackshear PJ, Kleinert H, Pautz A. Endothelial dysfunction in tristetraprolin-deficient mice is not caused by enhanced tumor necrosis factor-α expression. J Biol Chem 2014; 289:15653-65. [PMID: 24727475 PMCID: PMC4140920 DOI: 10.1074/jbc.m114.566984] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/09/2014] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular events are important co-morbidities in patients with chronic inflammatory diseases like rheumatoid arthritis. Tristetraprolin (TTP) regulates pro-inflammatory processes through mRNA destabilization and therefore TTP-deficient mice (TTP(-/-) mice) develop a chronic inflammation resembling human rheumatoid arthritis. We used this mouse model to evaluate molecular signaling pathways contributing to the enhanced atherosclerotic risk in chronic inflammatory diseases. In the aorta of TTP(-/-) mice we observed elevated mRNA expression of known TTP targets like tumor necrosis factor-α (TNF-α) and macrophage inflammatory protein-1α, as well as of other pro-atherosclerotic mediators, like Calgranulin A, Cathepsin S, and Osteopontin. Independent of cholesterol levels TTP(-/-) mice showed a significant reduction of acetylcholine-induced, nitric oxide-mediated vasorelaxation. The endothelial dysfunction in TTP(-/-) mice was associated with increased levels of reactive oxygen and nitrogen species (RONS), indicating an enhanced nitric oxide inactivation by RONS in the TTP(-/-) animals. The altered RONS generation correlates with increased expression of NADPH oxidase 2 (Nox2) resulting from enhanced Nox2 mRNA stability. Although TNF-α is believed to be a central mediator of inflammation-driven atherosclerosis, genetic inactivation of TNF-α neither improved endothelial function nor normalized Nox2 expression or RONS production in TTP(-/-) animals. Systemic inflammation caused by TTP deficiency leads to endothelial dysfunction. This process is independent of cholesterol and not mediated by TNF-α solely. Thus, other mediators, which need to be identified, contribute to enhanced cardiovascular risk in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Franziska Bollmann
- From the Department of Pharmacology, Center for Thrombosis and Hemostasis, and
| | | | - Matthias Oelze
- 2nd Medical Clinic, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany and
| | - Daniel Siuda
- From the Department of Pharmacology, Center for Thrombosis and Hemostasis, and
| | - Ning Xia
- From the Department of Pharmacology
| | | | - Andreas Daiber
- 2nd Medical Clinic, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany and
| | - Huige Li
- From the Department of Pharmacology
| | - Deborah J Stumpo
- the Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Perry J Blackshear
- the Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | | | | |
Collapse
|
12
|
Cao H, Zhang L, Tan X, Long H, Shockey JM. Identification, classification and differential expression of oleosin genes in tung tree (Vernicia fordii). PLoS One 2014; 9:e88409. [PMID: 24516650 PMCID: PMC3916434 DOI: 10.1371/journal.pone.0088409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Triacylglycerols (TAG) are the major molecules of energy storage in eukaryotes. TAG are packed in subcellular structures called oil bodies or lipid droplets. Oleosins (OLE) are the major proteins in plant oil bodies. Multiple isoforms of OLE are present in plants such as tung tree (Vernicia fordii), whose seeds are rich in novel TAG with a wide range of industrial applications. The objectives of this study were to identify OLE genes, classify OLE proteins and analyze OLE gene expression in tung trees. We identified five tung tree OLE genes coding for small hydrophobic proteins. Genome-wide phylogenetic analysis and multiple sequence alignment demonstrated that the five tung OLE genes represented the five OLE subfamilies and all contained the "proline knot" motif (PX5SPX3P) shared among 65 OLE from 19 tree species, including the sequenced genomes of Prunus persica (peach), Populus trichocarpa (poplar), Ricinus communis (castor bean), Theobroma cacao (cacao) and Vitis vinifera (grapevine). Tung OLE1, OLE2 and OLE3 belong to the S type and OLE4 and OLE5 belong to the SM type of Arabidopsis OLE. TaqMan and SYBR Green qPCR methods were used to study the differential expression of OLE genes in tung tree tissues. Expression results demonstrated that 1) All five OLE genes were expressed in developing tung seeds, leaves and flowers; 2) OLE mRNA levels were much higher in seeds than leaves or flowers; 3) OLE1, OLE2 and OLE3 genes were expressed in tung seeds at much higher levels than OLE4 and OLE5 genes; 4) OLE mRNA levels rapidly increased during seed development; and 5) OLE gene expression was well-coordinated with tung oil accumulation in the seeds. These results suggest that tung OLE genes 1-3 probably play major roles in tung oil accumulation and/or oil body development. Therefore, they might be preferred targets for tung oil engineering in transgenic plants.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan Province, People's Republic of China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan Province, People's Republic of China
| | - Hongxu Long
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan Province, People's Republic of China
| | - Jay M. Shockey
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| |
Collapse
|
13
|
Cao H, Shockey JM, Klasson KT, Chapital DC, Mason CB, Scheffler BE. Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues. PLoS One 2013; 8:e76946. [PMID: 24146944 PMCID: PMC3795650 DOI: 10.1371/journal.pone.0076946] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022] Open
Abstract
Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Jay M. Shockey
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - K. Thomas Klasson
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Dorselyn C. Chapital
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Catherine B. Mason
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, Louisiana, United States of America
| | - Brian E. Scheffler
- U.S. Department of Agriculture, Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, Mississippi, United States of America
| |
Collapse
|