1
|
Alquraisy A, Wilar G, Mohammed AFA, El-Rayyes A, Suhandi C, Wathoni N. A Comprehensive Review of Stem Cell Conditioned Media Role for Anti-Aging on Skin. Stem Cells Cloning 2024; 17:5-19. [PMID: 39310304 PMCID: PMC11416772 DOI: 10.2147/sccaa.s480437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Various studies have been widely conducted on conditioned medium for the development of anti-aging preparations, including the utilization of stem cells, which present a promising alternative solution. This narrative review aims to understand the latest developments in various conditioned medium stem cell applications for anti-aging on the skin. A search of the Scopus database yielded publications of interest. The research focused on articles published without restrictions on the year. After finding 68 articles in the search results, they moved on to the checking phase. Upon comprehensive literature review, 23 articles met the inclusion criteria, while 45 articles were deemed ineligible for participation in this research. The results of the review indicate that conditioned medium from various stem cells has demonstrated success in reducing risk factors for skin aging, as proven in various tests. The successful reduction of the risk of skin aging has been established in vitro, in vivo, and in clinical trials. Given the numerous studies on the progress of exploring and utilizing conditioned medium, it is expected to provide a solution to the problem of skin aging.
Collapse
Affiliation(s)
- Ayatulloh Alquraisy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
Joshi JM, Muttigi MS, Upadhya R, Seetharam RN. An overview of the current advances in the treatment of inflammatory diseases using mesenchymal stromal cell secretome. Immunopharmacol Immunotoxicol 2023:1-11. [PMID: 36786742 DOI: 10.1080/08923973.2023.2180388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The growing interest in mesenchymal stromal cell (MSC) therapy has been leading to the utilization of its therapeutic properties in a variety of inflammatory diseases. The clinical translation of the related research from bench to bedside is cumbersome due to some obvious limitations of cell therapy. It is evident from the literature that the MSC secretome components mediate their wide range of functions. Cell-free therapy using MSC secretome is being considered as an emerging and promising area of biotherapeutics. The secretome mainly consists of bioactive factors, free nucleic acids, and extracellular vesicles. Constituents of the secretome are greatly influenced by the cell's microenvironment. The broad array of immunomodulatory properties of MSCs are now being employed to target inflammatory diseases. This review focuses on the emerging MSC secretome therapies for various inflammatory diseases. The mechanism of action of the various anti-inflammatory factors is discussed. The potential of MSC secretome as a viable anti-inflammatory therapy is deliberated.
Collapse
Affiliation(s)
- Jahnavy Madhukar Joshi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Upadhya
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Callus Formation in Fractured Femur of Rats Treated with Injection of Human Umbilical Cord Mesenchymal Stem Cell-Conditioned Medium. Vet Med Int 2021; 2021:8410175. [PMID: 33996023 PMCID: PMC8096585 DOI: 10.1155/2021/8410175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells-conditioned medium (MSC-CM) is the extraction from stem cell medium containing biological substances, including growth factors and cytokines. These substances play roles in the various functions of body regulatory, including bone formation. However, the effect of MSC-CM derived from human umbilical cord injection in femur fracture healing of rats has not been reported previously. This study aims to see the effect of MSC-CM derived from human umbilical cord injection on the callus formation of bone fracture healing in Wistar rats (Rattus norvegicus). A femur fracture in 54 Wistar rats was made by surgery according to the procedure under sterile conditions. After the surgery, rats were divided into 2 groups of 27, respectively. Injection in the control (0.1 mL/kg body weight NaCl) and MSC-CM group (0.1 mL/kg body weight MSC-CM) was performed on weeks 0, 1, 2, 3, 4, 5, 6, 7, and 8 after surgery. Radiographic images and the femur bone samples were taken and collected on days 1, 7, 14, 21, 28, 35, and 60 after surgery. Bone samples were then fixed in Bouin solution. Histologic preparations were done by the paraffin method, by cutting the tissue blocks into 5 μm thickness and then staining with Mallory aniline blue staining. The results were analyzed descriptively and quantitatively. The result showed that the soft callus formation occurred rapidly and got wider in the MSC-CM group than that of the control group. The administration of MSC-CM injection postfracture surgery to femur fracture cases in rats was capable to accelerate the callus formation.
Collapse
|
4
|
Autocrine and Paracrine Effects of Vascular Endothelial Cells Promote Cutaneous Wound Healing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6695663. [PMID: 33937411 PMCID: PMC8055399 DOI: 10.1155/2021/6695663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/31/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022]
Abstract
Background When vascular endothelial cells are subjected to external stimuli, paracrine hormones and cytokines act on adjacent cells. The regulation of the biological behaviour of cells is closely related to the maintenance of organ function and the occurrence and development of disease. However, it is unclear whether vascular endothelial cells affect the biological behaviour of cells involved in wound repair through autocrine and paracrine mechanisms and ultimately play a role in wound healing. We aimed to verify the effect of the autocrine and paracrine functions of vascular endothelial cells on wound healing. Materials and Methods ELISA was used to detect platelet-derived growth factor, basic fibroblast growth factor, epidermal growth factor, and vascular endothelial growth factor in human umbilical vascular endothelial cell-conditioned medium (HUVEC-CM). Different concentrations of HUVEC-CM were used to treat different stem cells. CCK-8 and scratch assays were used to detect the proliferation and migration ability of each cell. A full-thickness dorsal skin defect model was established in mice, and skin wound healing was observed after the local injection of HUVEC-CM, endothelial cell medium (ECM), or normal saline. H&E staining and immunofluorescence were used to observe the gross morphology of the wound tissue, the epithelial cell migration distance, and the expression of CD3 and CD31. Results HUVEC-CM promotes the proliferation and migration of epidermal stem cells, skin fibroblasts, bone marrow mesenchymal stem cells, and HUVECs themselves. Furthermore, HUVEC-CM can promote angiogenesis in mouse skin wounds and granulation tissue formation and can accelerate wound surface epithelialization and collagen synthesis, thereby promoting wound healing. Conclusion Our results clearly suggest that it is practicable and effective to promote wound healing with cytokines secreted by vascular endothelial cells in a mouse model.
Collapse
|
5
|
Aslam N, Abusharieh E, Abuarqoub D, Alhattab D, Jafar H, Alshaer W, Masad RJ, Awidi AS. An In Vitro Comparison of Anti-Tumoral Potential of Wharton's Jelly and Bone Marrow Mesenchymal Stem Cells Exhibited by Cell Cycle Arrest in Glioma Cells (U87MG). Pathol Oncol Res 2021; 27:584710. [PMID: 34257532 PMCID: PMC8262206 DOI: 10.3389/pore.2021.584710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
The therapeutic potential of mesenchymal stem cells (MSCs) for various malignancies is currently under investigation due to their unique properties. However, many discrepancies regarding their anti-tumoral or pro-tumoral properties have raised uncertainty about their application for anti-cancer therapies. To investigate, if the anti-tumoral or pro-tumoral properties are subjective to the type of MSCs under different experimental conditions we set out these experiments. Three treatments namely cell lysates (CL), serum-free conditioned media and FBS conditioned media (FBSCM) from each of Wharton’s Jelly MSCs and Bone Marrow-MSCs were applied to evaluate the anti-tumoral or pro-tumoral effect on the glioma cells (U87MG). The functional analysis included; Morphological evaluation, proliferation and migration potential, cell cycle analysis, and apoptosis for glioma cells. The fibroblast cell line was added to investigate the stimulatory or inhibitory effect of treatments on the proliferation of the normal cell. We found that cell lysates induced a generalized inhibitory effect on the proliferation of the glioma cells and the fibroblasts from both types of MSCs. Similarly, both types of conditioned media from two types of MSCs exerted the same inhibitory effect on the proliferation of the glioma cells. However, the effect of two types of conditioned media on the proliferation of fibroblasts was stimulatory from BM-MSCs and variable from WJ-MSCs. Moreover, all three treatments exerted a likewise inhibitory effect on the migration potential of the glioma cells. Furthermore, we found that the cell cycle was arrested significantly at the G1 phase after treating cells with conditioned media which may have led to inhibit the proliferative and migratory abilities of the glioma cells (U87MG). We conclude that cell extracts of MSCs in the form of secretome can induce specific anti-tumoral properties in serum-free conditions for the glioma cells particularly the WJ-MSCs and the effect is mediated by the cell cycle arrest at the G1 phase.
Collapse
Affiliation(s)
- Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Elham Abusharieh
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Pharmaceutical science, Faculty of Pharmacy, The University of Jordan, Amman, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra. Amman, Jordan
| | - Dana Alhattab
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Laboratory for Nanomedicine, Division of Biological & Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Razan J Masad
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Abdalla S Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Medicine, School of Medicine, The University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, The University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, The University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Takeuchi H, Takahashi H, Tanaka A. Effects of Human Dental Pulp Stem Cell-Derived Conditioned Medium on Atrophied Submandibular Gland after the Release from Ligation of the Main Excretory Duct in Mice. J HARD TISSUE BIOL 2020. [DOI: 10.2485/jhtb.29.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hisashi Takeuchi
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata
| | - Haruka Takahashi
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata
- Division of Cell Regeneration and Transplantation, Advanced Research Center School of Life Dentistry at Niigata, The Nippon Dental University Niigata
| | - Akira Tanaka
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata
- Division of Cell Regeneration and Transplantation, Advanced Research Center School of Life Dentistry at Niigata, The Nippon Dental University Niigata
| |
Collapse
|
7
|
Ziegler T, Cakl T, Schauer J, Pögl D, Kempny T. Treatment of second to third-degree burns in a 2-day-old infant: A case report. Int J Surg Case Rep 2019; 61:195-198. [PMID: 31377542 PMCID: PMC6698275 DOI: 10.1016/j.ijscr.2019.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/10/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Burn injuries in newborns are particularly complex cases. Since these patients are rare, there is little experience and no existing standardized treatment. PRESENTATION OF CASE This report examines a case of accidental second to third-degree burning of the heel and toes on the left foot in a new-born girl. The burns covered an estimated 1% of the total body surface area (TBSA). After an initial debridement and 32 days of non-surgical wound therapy with Adaptic® fat gauze dressings, we were able to achieve an aesthetically and functionally satisfactory result including the complete preservation of all toes. In order to eliminate a scar contracture, we carried out a Z-plasty one year later. DISCUSSION Modern wound treatment following the principle of less frequent dressing changes allows the burn wound to have better re-epithelialization. New findings in stem cell research indicate that the high proportion of mesenchymal stem cells (MSC) in postnatal blood is also involved in the regeneration and healing of burns. To our knowledge, this is the first case report dealing with initial non-surgical combustion therapy in a newborn. CONCLUSION There is evidence that newborns have a much higher potential for wound healing than adults. Proper position in long-term immobilization of toes is important to prevent scar contracture and deformity.
Collapse
Affiliation(s)
- Thomas Ziegler
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Klinikum Wels-Grieskirchen, Austria.
| | - Thomas Cakl
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Klinikum Wels-Grieskirchen, Austria
| | - Johannes Schauer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Klinikum Wels-Grieskirchen, Austria
| | - Dieter Pögl
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Klinikum Wels-Grieskirchen, Austria
| | - Tomas Kempny
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Klinikum Wels-Grieskirchen, Austria
| |
Collapse
|
8
|
Schreurs M, Suttorp CM, Mutsaers HAM, Kuijpers-Jagtman AM, Von den Hoff JW, Ongkosuwito EM, Carvajal Monroy PL, Wagener FADTG. Tissue engineering strategies combining molecular targets against inflammation and fibrosis, and umbilical cord blood stem cells to improve hampered muscle and skin regeneration following cleft repair. Med Res Rev 2019; 40:9-26. [PMID: 31104334 PMCID: PMC6972684 DOI: 10.1002/med.21594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
Cleft lip with or without cleft palate is a congenital deformity that occurs in about 1 of 700 newborns, affecting the dentition, bone, skin, muscles and mucosa in the orofacial region. A cleft can give rise to problems with maxillofacial growth, dental development, speech, and eating, and can also cause hearing impairment. Surgical repair of the lip may lead to impaired regeneration of muscle and skin, fibrosis, and scar formation. This may result in hampered facial growth and dental development affecting oral function and lip and nose esthetics. Therefore, secondary surgery to correct the scar is often indicated. We will discuss the molecular and cellular pathways involved in facial and lip myogenesis, muscle anatomy in the normal and cleft lip, and complications following surgery. The aim of this review is to outline a novel molecular and cellular strategy to improve musculature and skin regeneration and to reduce scar formation following cleft repair. Orofacial clefting can be diagnosed in the fetus through prenatal ultrasound screening and allows planning for the harvesting of umbilical cord blood stem cells upon birth. Tissue engineering techniques using these cord blood stem cells and molecular targeting of inflammation and fibrosis during surgery may promote tissue regeneration. We expect that this novel strategy improves both muscle and skin regeneration, resulting in better function and esthetics after cleft repair.
Collapse
Affiliation(s)
- Michaël Schreurs
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C Maarten Suttorp
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Johannes W Von den Hoff
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Edwin M Ongkosuwito
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paola L Carvajal Monroy
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Robert AW, Azevedo Gomes F, Rode MP, Marques da Silva M, Veleirinho MBDR, Maraschin M, Hayashi L, Wosgrau Calloni G, Stimamiglio MA. The skin regeneration potential of a pro-angiogenic secretome from human skin-derived multipotent stromal cells. J Tissue Eng 2019; 10:2041731419833391. [PMID: 30886688 PMCID: PMC6415469 DOI: 10.1177/2041731419833391] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/26/2019] [Indexed: 12/18/2022] Open
Abstract
Multipotent stromal cells stimulate skin regeneration after acute or chronic injuries. However, many stem cell therapy protocols are limited by the elevated number of cells required and poor cell survival after transplantation. Considering that the beneficial effects of multipotent stromal cells on wound healing are typically mediated by paracrine mechanisms, we examined whether the conditioned medium from skin-derived multipotent stromal cells would be beneficial for restoring the skin structure of mice after wounding. A proteomic characterization of skin-derived multipotent stromal cell-conditioned medium was performed, and the angiogenic function of this secretome was investigated in vitro using an endothelial cell tube formation assay. We then applied the skin-derived multipotent stromal cell-conditioned medium directly to full-thickness excisional wounds or embedded it into carrageenan or poly(vinyl alcohol) hydrogels to monitor tissue regeneration in mice. Biological processes related to wound healing and angiogenesis were highlighted by the analysis of the skin-derived multipotent stromal cell secretome, and a pro-angiogenic capacity for promoting tubule-like structures was first confirmed in vitro. Skin wounds treated with skin-derived multipotent stromal cell-conditioned medium also displayed increased angiogenesis, independently of the association of the conditioned medium with hydrogels. However, improvements in wound closure and epidermis or decreased inflammatory cell presence were not observed. Hence, the use of the secretome obtained from human skin-derived multipotent stromal cells may be a potential strategy to aid the natural skin repair of full-thickness lesions mainly based on its pro-angiogenic properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leila Hayashi
- Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | |
Collapse
|
10
|
Hanyu S, Sakuma K, Tanaka A. A Study on the Effect of Human Dental Pulp Stem Cell Conditioned Medium on Human Oral Squamous Cell Carcinoma Cell Lines. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shintaro Hanyu
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata
| | - Kaname Sakuma
- Department of Oral and Maxillofacial Surgery, Niigata Hospital, The Nippon Dental University
| | - Akira Tanaka
- Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Life Dentistry at Niigata
| |
Collapse
|
11
|
Fromer MW, Chang S, Hagaman AL, Koko KR, Nolan RS, Zhang P, Brown SA, Carpenter JP, Caputo FJ. The endothelial cell secretome as a novel treatment to prime adipose-derived stem cells for improved wound healing in diabetes. J Vasc Surg 2018; 68:234-244. [DOI: 10.1016/j.jvs.2017.05.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/02/2017] [Indexed: 12/11/2022]
|
12
|
Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH. Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents. Stem Cell Rev Rep 2018; 14:484-499. [DOI: 10.1007/s12015-018-9817-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Luo ML, Liu XP, Wang F, Liu XX, Liu WF, Wu D, Tao H, Wang RL, Zhao Y, Zhu JW, Zou L. Conditioned Medium from Human Umbilical Vein Endothelial Cells Promotes Proliferation, Migration, Invasion and Angiogenesis of Adipose Derived Stem Cells. Curr Med Sci 2018; 38:124-130. [PMID: 30074161 DOI: 10.1007/s11596-018-1855-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/11/2017] [Indexed: 12/24/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive complication, closely related to endothelial dysfunction. Adipose derived stem cells (ADSCs) have the capacity to differentiate into endothelial cells for vascular repair. Therefore, we hypothesized that induced endothelial differentiation of ADSCs might hold great potential for the treatment of PE. In this study, the primary ADSCs and human umbilical vein endothelial cells (HUVECs) were isolated by the collagenase digestion method. The supernatant of HUVECs was collected from the first generation of cells. Then, ADSCs were divided into two groups: ADSCs alone group and induced ADSCs (iADSCs) group. In iADSCs group, ADSCs were induced by HUVECs conditioned medium and ADSCs special culture medium at a ratio of 1:1 over a two-week period. In order to identify the endothelial characteristics of iADSCs, CD31 and CD34 were examined by flow cytometry. The proliferation, migration, invasion and angiogenesis assays were employed to compare the bioactivity of iADSCs and ADSCs. Furthermore, The levels of angiogenic related factors including vascular endothelial growth factor (VEGF) and placenta growth factor (P1GF) were detected by RT-PCR and Western blotting. Results showed conditioned medium from HUVECs promoted ADSCs proliferation, migration, invasion and angiogenesis. In addition, the levels of VEGF and P1GF were significantly enhanced in iADSCs group. This study uncovered the iADSCs application potential in the therapy and intervention of PE.
Collapse
Affiliation(s)
- Ming-Lian Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Obstetrics and Gynecology, Wuhan First Hospital, Wuhan, 430022, China
| | - Xiao-Ping Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Xia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei-Fang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong-Li Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jian-Wen Zhu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Tarcisia T, Damayanti L, Antarianto RD, Moenadjat Y, Pawitan JA. Adipose derived stem cell conditioned medium effect on proliferation phase of wound healing in Sprague Dawley rat. MEDICAL JOURNAL OF INDONESIA 2018. [DOI: 10.13181/mji.v26i4.1755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Background: Disintegration of skin tissue can lead to disability and death. Recent studies on wound therapy applied stem cells and adipose derived stem cell conditioned medium (ADSC-CM) to improve wound healing. However, the role of ADSC-CM in wound healing mechanism in terms of angiogenesis, quantity of collagen, and epithelialization is not fully understood. Therefore, this study aimed to analyze the levels of growth factors (VEGF and EGF) in ADSC-CM and histological features of angiogenesis, epithelialization, and collagen density after skin incision in Sprague Dawley rats.Methods: Thirty rats were injured at the back (full thickness wound) and treated topically with ADSC-CM, culture medium, basal medium, and without treatment. Mice were sacrificed on days 3, 7, 14, 21 and 28. After sacrificed, tissue samples were examined microscopically to assess angiogenesis, epithelialization, and collagen density. Concentrations of VEGF and EGF in ADSC-CM were measured by ELISA.Results: Clinically, wound that was treated with ADSC-CM showed improvement in wound healing process. ADSC-CM treated wound showed the highest epithelialization ratio and the fastest wound closure.Conclusion: There were no statistical significant differences between groups that were treated with ADSC-CM and not. However, topical ADSC-CM treated wound revealed a better clinical improvement in epithelialization.
Collapse
|
15
|
Kim YJ, Yoo SM, Park HH, Lim HJ, Kim YL, Lee S, Seo KW, Kang KS. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem Biophys Res Commun 2017; 493:1102-1108. [DOI: 10.1016/j.bbrc.2017.09.056] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
|
16
|
Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci 2017; 18:ijms18091852. [PMID: 28841158 PMCID: PMC5618501 DOI: 10.3390/ijms18091852] [Citation(s) in RCA: 777] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Earlier research primarily attributed the effects of mesenchymal stem cell (MSC) therapies to their capacity for local engrafting and differentiating into multiple tissue types. However, recent studies have revealed that implanted cells do not survive for long, and that the benefits of MSC therapy could be due to the vast array of bioactive factors they produce, which play an important role in the regulation of key biologic processes. Secretome derivatives, such as conditioned media or exosomes, may present considerable advantages over cells for manufacturing, storage, handling, product shelf life and their potential as a ready-to-go biologic product. Nevertheless, regulatory requirements for manufacturing and quality control will be necessary to establish the safety and efficacy profile of these products. Among MSCs, human uterine cervical stem cells (hUCESCs) may be a good candidate for obtaining secretome-derived products. hUCESCs are obtained by Pap cervical smear, which is a less invasive and painful method than those used for obtaining other MSCs (for example, from bone marrow or adipose tissue). Moreover, due to easy isolation and a high proliferative rate, it is possible to obtain large amounts of hUCESCs or secretome-derived products for research and clinical use.
Collapse
|
17
|
Li Y, Tian Y, Zheng W, Feng Y, Huang R, Shao J, Tang R, Wang P, Jia Y, Zhang J, Zheng W, Yang G, Jiang X. Composites of Bacterial Cellulose and Small Molecule-Decorated Gold Nanoparticles for Treating Gram-Negative Bacteria-Infected Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700130. [PMID: 28544761 DOI: 10.1002/smll.201700130] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/20/2017] [Indexed: 05/26/2023]
Abstract
Bacterial infections, especially multidrug-resistant bacterial infections, are an increasingly serious problem in the field of wound healing. Herein, bacterial cellulose (BC) decorated by 4,6-diamino-2-pyrimidinethiol (DAPT)-modified gold nanoparticles (Au-DAPT NPs) is presented as a dressing (BC-Au-DAPT nanocomposites) for treating bacterially infected wounds. BC-Au-DAPT nanocomposites have better efficacy (measured in terms of reduced minimum inhibition concentration) than most of the antibiotics (cefazolin/sulfamethoxazole) against Gram-negative bacteria, while maintaining excellent physicochemical properties including water uptake capability, mechanical strain, and biocompatibility. On Escherichia coli- or Pseudomonas aeruginosa-infected full-thickness skin wounds on rats, the BC-Au-DAPT nanocomposites inhibit bacterial growth and promote wound repair. Thus, the BC-Au-DAPT nanocomposite system is a promising platform for treating superbug-infected wounds.
Collapse
Affiliation(s)
- Ying Li
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Yue Tian
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
- Department of Pharmacy, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, 100050, China
| | - Wenshu Zheng
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Yan Feng
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Rong Huang
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Jingxin Shao
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Rongbing Tang
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Peng Wang
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Yuexiao Jia
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Jiangjiang Zhang
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Wenfu Zheng
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
| | - Guang Yang
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xingyu Jiang
- CAS Center of Excellence for Nanoscience, Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Laube M, Stolzing A, Thome UH, Fabian C. Therapeutic potential of mesenchymal stem cells for pulmonary complications associated with preterm birth. Int J Biochem Cell Biol 2016; 74:18-32. [PMID: 26928452 DOI: 10.1016/j.biocel.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022]
Abstract
Preterm infants frequently suffer from pulmonary complications resulting in significant morbidity and mortality. Physiological and structural lung immaturity impairs perinatal lung transition to air breathing resulting in respiratory distress. Mechanical ventilation and oxygen supplementation ensure sufficient oxygen supply but enhance inflammatory processes which might lead to the establishment of a chronic lung disease called bronchopulmonary dysplasia (BPD). Current therapeutic options to prevent or treat BPD are limited and have salient side effects, highlighting the need for new therapeutic approaches. Mesenchymal stem cells (MSCs) have demonstrated therapeutic potential in animal models of BPD. This review focuses on MSC-based therapeutic approaches to treat pulmonary complications and critically compares results obtained in BPD models. Thereby bottlenecks in the translational systems are identified that are preventing progress in combating BPD. Notably, current animal models closely resemble the so-called "old" BPD with profound inflammation and injury, whereas clinical improvements shifted disease pathology towards a "new" BPD in which arrest of lung maturation predominates. Future studies need to evaluate the utility of MSC-based therapies in animal models resembling the "new" BPD though promising in vitro evidence suggests that MSCs do possess the potential to stimulate lung maturation. Furthermore, we address the mode-of-action of MSC-based therapies with regard to lung development and inflammation/fibrosis. Their therapeutic efficacy is mainly attributed to an enhancement of regeneration and immunomodulation due to paracrine effects. In addition, we discuss current improvement strategies by genetic modifications or precondition of MSCs to enhance their therapeutic efficacy which could also prove beneficial for BPD therapies.
Collapse
Affiliation(s)
- Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Alexandra Stolzing
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Loughborough University, Wolfson School of Mechanical and Manufacturing Engineering, Centre for Biological Engineering, Loughborough, UK.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children & Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany.
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
19
|
Park CM, Kim MJ, Kim SM, Park JH, Kim ZH, Choi YS. Umbilical cord mesenchymal stem cell-conditioned media prevent muscle atrophy by suppressing muscle atrophy-related proteins and ROS generation. In Vitro Cell Dev Biol Anim 2015; 52:68-76. [DOI: 10.1007/s11626-015-9948-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/31/2015] [Indexed: 12/11/2022]
|
20
|
Kim SK, Lee J, Song M, Kim M, Hwang SJ, Jang H, Park Y. Combination of three angiogenic growth factors has synergistic effects on sprouting of endothelial cell/mesenchymal stem cell-based spheroids in a 3D matrix. J Biomed Mater Res B Appl Biomater 2015; 104:1535-1543. [PMID: 26268584 DOI: 10.1002/jbm.b.33498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022]
Abstract
Combinations of angiogenic growth factors have been shown to have synergistic effects on angiogenesis and natural wound healing in various animal models. Each growth factor has unique roles during angiogenesis; vascular endothelial growth factor (VEGF) plays a key role during the initial step of angiogenesis, whereas PDGF functions in the maturation of blood vessels. We used a combination of three angiogenic growth factors to increase angiogenesis in vitro and in vivo. We chose VEGF as a basic factor and added platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) to induce angiogenesis in three in vitro and in vivo models: 3D angiogenesis assay, 3D co-culture, and matrigel plug implantation assay. Cell proliferation was significantly higher in co-cultured cells treated with PDGF + VEGF + FGF than in the control, single, or dual combination groups. mRNA expression of α-smooth muscle actin (α-SMA), von Willebrand factor (vWF), and CD105 was higher in the triple group (PDGF + VEGF + FGF) than in control, single, or dual combination groups. In the PDGF + VEGF + FGF group, the length and number of branches of spheroids was also significantly higher than in the control, single, or dual combination groups. Furthermore, in a nude mouse model, α-SMA expression was significantly higher in the PDGF + VEGF + FGF group than in other groups. In conclusion, the addition of PDGF and FGF to VEGF showed synergistic effects on angiogenesis in vitro and in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1535-1543, 2016.
Collapse
Affiliation(s)
- Sook Kyoung Kim
- Department of Biomedical Engineering, Medical College, Korea University, Seoul, Korea
| | - Jaeyeon Lee
- Department of Biomedical Engineering, Medical College, Korea University, Seoul, Korea
| | - Myeongjin Song
- Department of Biomedical Engineering, Medical College, Korea University, Seoul, Korea
| | - Mirim Kim
- Department of Biomedical Engineering, Medical College, Korea University, Seoul, Korea
| | - Soon Jung Hwang
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, School of Dentistry, Dental Research Institute, BK 21 Plus, Korea
| | - Hwanseok Jang
- Department of Biomedical Engineering, Medical College, Korea University, Seoul, Korea
| | - Yongdoo Park
- Department of Biomedical Engineering, Medical College, Korea University, Seoul, Korea.
| |
Collapse
|
21
|
Prospect of stem cell conditioned medium in regenerative medicine. BIOMED RESEARCH INTERNATIONAL 2014; 2014:965849. [PMID: 25530971 PMCID: PMC4229962 DOI: 10.1155/2014/965849] [Citation(s) in RCA: 273] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. OBJECTIVE To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. METHODS Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. RESULTS Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. CONCLUSION Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.
Collapse
|