1
|
Verdonckt TW, Bilsen A, Van Nieuwerburgh F, De Troij L, Santos D, Vanden Broeck J. Identification and Profiling of a Novel Bombyx mori latent virus Variant Acutely Infecting Helicoverpa armigera and Trichoplusia ni. Viruses 2023; 15:v15051183. [PMID: 37243270 DOI: 10.3390/v15051183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Insect cell expression systems are increasingly being used in the medical industry to develop vaccines against diseases such as COVID-19. However, viral infections are common in these systems, making it necessary to thoroughly characterize the viruses present. One such virus is Bombyx mori latent virus (BmLV), which is known to be specific to Bombyx mori and to have low pathogenicity. However, there has been little research on the tropism and virulence of BmLV. In this study, we examined the genomic diversity of BmLV and identified a variant that persistently infects Trichoplusia ni-derived High Five cells. We also assessed the pathogenicity of this variant and its effects on host responses using both in vivo and in vitro systems. Our results showed that this BmLV variant causes acute infections with strong cytopathic effects in both systems. Furthermore, we characterized the RNAi-based immune response in the T. ni cell line and in Helicoverpa armigera animals by assessing the regulation of RNAi-related genes and profiling the generated viral small RNAs. Overall, our findings shed light on the prevalence and infectious properties of BmLV. We also discuss the potential impact of virus genomic diversity on experimental outcomes, which can help interpret past and future research results.
Collapse
Affiliation(s)
- Thomas-Wolf Verdonckt
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Anton Bilsen
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Loes De Troij
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Arya SK, Goodman CL, Stanley D, Palli SR. A database of crop pest cell lines. In Vitro Cell Dev Biol Anim 2022; 58:719-757. [PMID: 35994130 DOI: 10.1007/s11626-022-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
We have developed an online database describing the known cell lines from Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera that were developed from agricultural pests. Cell line information has been primarily obtained from previous compilations of insect cell lines. We conducted in-depth Internet literature searches and drew on Internet sources such as the Cellosaurus database (https://web.expasy.org/cellosaurus/), and inventories from cell line depositories. Here, we report on a new database of insect cell lines, which covers 719 cell lines from 86 species. We have not included cell lines developed from Drosophila because they are already known from published databases, such as https://dgrc.bio.indiana.edu/cells/Catalog. We provide the designation, tissue and species of origin, cell line developer, unique characteristics, its use in various applications, publications, and patents, and, when known, insect virus susceptibility. This information has been assembled and organized into a searchable database available at the link https://entomology.ca.uky.edu/aginsectcellsdatabase which will be updated on an ongoing basis.
Collapse
Affiliation(s)
- Surjeet Kumar Arya
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Cynthia L Goodman
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - David Stanley
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
3
|
Santos D, Verdonckt TW, Mingels L, Van den Brande S, Geens B, Van Nieuwerburgh F, Kolliopoulou A, Swevers L, Wynant N, Vanden Broeck J. PIWI Proteins Play an Antiviral Role in Lepidopteran Cell Lines. Viruses 2022; 14:v14071442. [PMID: 35891422 PMCID: PMC9321812 DOI: 10.3390/v14071442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Insect antiviral immunity primarily relies on RNAi mechanisms. While a key role of small interfering (si)RNAs and AGO proteins has been well established in this regard, the situation for PIWI proteins and PIWI-interacting (pi)RNAs is not as clear. In the present study, we investigate whether PIWI proteins and viral piRNAs are involved in the immunity against single-stranded RNA viruses in lepidopteran cells, where two PIWIs are identified (Siwi and Ago3). Via loss- and gain-of-function studies in Bombyx mori BmN4 cells and in Trichoplusia ni High Five cells, we demonstrated an antiviral role of Siwi and Ago3. However, small RNA analysis suggests that viral piRNAs can be absent in these lepidopteran cells. Together with the current literature, our results support a functional diversification of PIWI proteins in insects.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
- Correspondence:
| | - Thomas-Wolf Verdonckt
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Lina Mingels
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Stijn Van den Brande
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Bart Geens
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Gent University, Ottergemsesteenweg 460, 9000 Gent, Belgium;
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 153 10 Athens, Greece; (A.K.); (L.S.)
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Aghia Paraskevi Attikis, 153 10 Athens, Greece; (A.K.); (L.S.)
| | - Niels Wynant
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (T.-W.V.); (L.M.); (S.V.d.B.); (B.G.); (N.W.); (J.V.B.)
| |
Collapse
|
4
|
Whole-genome sequencing and comparative transcriptome analysis of Bombyx mori nucleopolyhedrovirus La strain. Virus Genes 2020; 56:249-259. [PMID: 31912283 DOI: 10.1007/s11262-019-01727-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
The Bombyx mori nucleopolyhedrovirus (BmNPV) La is a variant BmNPV strain isolated in Laos. La has different features from BmNPV type strain T3 in virulence, production of the polyhedrin protein, and the formation of multicapsid occlusion-derived viruses. Here, the whole-genome sequence of La was compared to the sequences of nine BmNPV and two Bombyx mandarina nucleopolyhedrovirus strains. The complete La genome consisted of 127,618 base pairs with a G + C content of 40.3% and contained putative 136 open reading frames encoding more than 60 amino acids. The La genome lacked the bro-b gene and had the highest identity with that of the T3 strain. A comparison of the transcriptomes of La- and T3-infected cells showed that the expression levels of the polyhedrin and cathepsin genes were greater in cells infected with La as compared to those infected with T3. Interestingly, the virus genes with different RNA levels between the two BmNPV strains were assembled into five clusters in the genome of La. Also, the RNA levels of host ribosomal protein genes were significantly decreased in cells infected with La as compared to those infected with T3.
Collapse
|
5
|
Fu Y, Yang Y, Zhang H, Farley G, Wang J, Quarles KA, Weng Z, Zamore PD. The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology. eLife 2018; 7:31628. [PMID: 29376823 PMCID: PMC5844692 DOI: 10.7554/elife.31628] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/26/2018] [Indexed: 12/30/2022] Open
Abstract
We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest, Trichoplusia ni, assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families reveal T. ni-specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, and T. ni siRNAs are not 2´-O-methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. The T. ni genome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo. A common moth called the cabbage looper is becoming increasingly relevant to the scientific community. Its caterpillars are a serious threat to cabbage, broccoli and cauliflower crops, and they have started to resist the pesticides normally used to control them. Moreover, the insect’s germline cells – the ones that will produce sperm and eggs – are used in laboratories as ‘factories’ to artificially produce proteins of interest. The germline cells also host a group of genetic mechanisms called RNA silencing. One of these processes is known as piRNA, and it protects the genome against ‘jumping genes’. These genetic elements can cause mutations by moving from place to place in the DNA: in germline cells, piRNA suppresses them before the genetic information is transmitted to the next generation. Not all germline cells grow equally well under experimental conditions, or are easy to use to examine piRNA mechanisms in a laboratory. The germline cells from the cabbage looper, on the other hand, have certain characteristics that would make them ideal to study piRNA in insects. However, the genome of the moth had not yet been fully resolved. This hinders research on new ways of controlling the pest, on how to use the germline cells to produce more useful proteins, or on piRNA. Decoding a genome requires several steps. First, the entire genetic information is broken in short sections that can then be deciphered. Next, these segments need to be ‘assembled’ – put together, and in the right order, to reconstitute the entire genome. Certain portions of the genome, which are formed of repeats of the same sections, can be difficult to assemble. Finally, the genome must be annotated: the different regions – such as the genes – need to be identified and labeled. Here, Fu et al. assembled and annotated the genome of the cabbage looper, and in the process developed strategies that could be used for other species with a lot of repeated sequences in their genomes. Having access to the looper’s full genetic information makes it possible to use their germline cells to produce new types of proteins, for example for pharmaceutical purposes. Fu et al. went on to make working with these cells even easier by refining protocols so that modern research techniques, such as the gene-editing technology CRISPR-Cas9, can be used on the looper germline cells. The mapping of the genome also revealed that the genes involved in removing toxins from the insects’ bodies are rapidly evolving, which may explain why the moths readily become resistant to insecticides. This knowledge could help finding new ways of controlling the pest. Finally, the genes involved in RNA silencing were labeled: results show that an entire chromosome is the source of piRNAs. Combined with the new protocols developed by Fu et al., this could make cabbage looper germline cells the default option for any research into the piRNA mechanism. How piRNA works in the moth could inform work on human piRNA, as these processes are highly similar across the animal kingdom.
Collapse
Affiliation(s)
- Yu Fu
- Bioinformatics Program, Boston University, Boston, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Yujing Yang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Han Zhang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Gwen Farley
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Junling Wang
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Kaycee A Quarles
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
6
|
The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids 2017; 49:1029-1039. [DOI: 10.1007/s00726-017-2396-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
|
7
|
Innami K, Aizawa T, Tsukui T, Katsuma S, Imanishi S, Kawasaki H, Iwanaga M. Infection studies of nontarget mammalian cell lines with Bombyx mori macula-like virus. J Virol Methods 2016; 229:24-6. [DOI: 10.1016/j.jviromet.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/09/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
8
|
Iwanaga M, Tsukui K, Uchiyama K, Katsuma S, Imanishi S, Kawasaki H. Expression of recombinant proteins by BEVS in a macula-like virus-free silkworm cell line. J Invertebr Pathol 2014; 123:34-7. [PMID: 25229420 DOI: 10.1016/j.jip.2014.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/01/2014] [Accepted: 09/07/2014] [Indexed: 11/25/2022]
Abstract
We previously established the first Bombyx mori macula-like virus (BmMLV)-free cell line (BmVF cells) from a B. mori embryo. In this study, we evaluated the expression of recombinant proteins in BmVF cells using a B. mori nucleopolyhedrovirus (BmNPV)-derived expression vector. Our results showed that BmVF cells are susceptible to BmNPV, and both the promoter activity of the polyhedrin gene and the post-translated modifications of a recombinant protein are equivalent between BmMLV-negative BmVF and -positive BmN4 cells. These findings indicate that persistent infection with BmMLV has no discernible effect on BmNPV-mediated protein production in B. mori cells.
Collapse
Affiliation(s)
- Masashi Iwanaga
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Mine-machi 350, Utsunomiya-shi, Tochigi 321-8505, Japan.
| | - Keita Tsukui
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Mine-machi 350, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Koudai Uchiyama
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Mine-machi 350, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeo Imanishi
- Genebank, National Institute of Agrobiological Science, Kannondai 2-1-2, Tsukuba-shi, Ibaraki 305-8602, Japan
| | - Hideki Kawasaki
- Department of Agrobiology and Bioresources, Faculty of Agriculture, Utsunomiya University, Mine-machi 350, Utsunomiya-shi, Tochigi 321-8505, Japan
| |
Collapse
|