1
|
Synthesis of Caffeic Acid Sulphonamide Derivatives and Preliminary Exploration of Their Biological Applications. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0014-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2
|
Li T, Liu B, Chen K, Lou Y, Jiang Y, Zhang D. Small molecule compounds promote the proliferation of chondrocytes and chondrogenic differentiation of stem cells in cartilage tissue engineering. Biomed Pharmacother 2020; 131:110652. [PMID: 32942151 DOI: 10.1016/j.biopha.2020.110652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/09/2023] Open
Abstract
The application of tissue engineering to generate cartilage is limited because of low proliferative ability and unstable phenotype of chondrocytes. The sources of cartilage seed cells are mainly chondrocytes and stem cells. A variety of methods have been used to obtain large numbers of chondrocytes, including increasing chondrocyte proliferation and stem cell chondrogenic differentiation via cytokines, genes, and proteins. Natural or synthetic small molecule compounds can provide a simple and effective method to promote chondrocyte proliferation, maintain a stable chondrocyte phenotype, and promote stem cell chondrogenic differentiation. Therefore, the study of small molecule compounds is of great importance for cartilage tissue engineering. Herein, we review a series of small molecule compounds and their mechanisms that can promote chondrocyte proliferation, maintain chondrocyte phenotype, or induce stem cell chondrogenesis. The studies in this field represent significant contributions to the research in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tian Li
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Kang Chen
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Huang X, Wu H, Wang L, Zheng L, Zhao J. Protective effects of baicalin on rabbit articular chondrocytes in vitro. Exp Ther Med 2017; 13:1267-1274. [PMID: 28413465 PMCID: PMC5377289 DOI: 10.3892/etm.2017.4116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/04/2016] [Indexed: 12/29/2022] Open
Abstract
Drug therapy is one of the typical treatments for post-injury inflammation of cartilage. Traditional Chinese herbs have potential as treatments, as their long history of clinical application has demonstrated they are effective and induce minimal side effects. Baicalin is a traditional Chinese medicine that has been used to treat inflammation, fever, ulcers and cancer for hundreds of years. Previous studies have demonstrated that baicalin may decrease levels of interleukin-1β and suppress the expression of type-I collagen, thus attenuating cartilage degeneration. In the present study, the effect of baicalin on chondrocytes was assessed by examining the morphology, proliferation, extracellular matrix (ECM) synthesis and cartilage-specific gene expression of chondrocytes. The results indicated that baicalin may promote the proliferation of articular chondrocytes, secretion of cartilage ECM and collagen type II, aggrecan and SRY box (Sox) 9 gene upregulation. The expression of collagen I, a marker of chondrocyte dedifferentiation, was downregulated by baicalin; therefore, baicalin may maintain the phenotype of chondrocytes. Within the recommended concentrations of baicalin ranging from 0.625-6.25 µmol/l cell proliferation was increased and a 1.25 µmol/l dose of baicalin exerted the most positive effect on articular chondrocytes. The results of the present study may therefore indicate that baicalin may be used as a novel agent promoting the repair of articular cartilage damage.
Collapse
Affiliation(s)
- Xianyuan Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huayu Wu
- Department of Cell Biology and Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
4
|
Lu Z, Wu H, Lin X, Liu B, Lin C, Zheng L, Zhao J. Chondro-Protective and Antiarthritic Effects of Sulfonamido-Based Gallate-ZXHA-TC in Vitro and in Vivo. ACS Chem Biol 2016; 11:1613-23. [PMID: 27017891 DOI: 10.1021/acschembio.6b00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of gallic acid (GA) on arthritis are limited by weak antioxidant effects and inferior biological properties of GA. We recently described a new series of synthesized GA derivatives by coupling with sulfonamides. Among these analogs, a novel compound synthesized from GA and sulfadimoxine (SDM) named ZXHA-TC exhibited the most robust anti-inflammatory potential. In this current study, the chondro-protective and antiarthritic effects of ZXHA-TC were investigated both in vitro and in vivo. In the in vitro study, ZXHA-TC exerted chondro-protective effects as evidenced by promoting cell proliferation and the maintaining of the phenotype of articular chondrocytes treated with interleukin-1-beta (IL-1β). The potential of ZXHA-TC to slow the progress of osteoarthritis (OA) was suggested by a reduction in matrix metalloproteinases (MMPs) and the up-regulation of the tissue inhibitor of metalloproteinase-1 (TIMP-1). In a rabbit anterior cruciate ligament transaction (ACLT) model of OA, ZXHA-TC exerted a protective effect on arthritis as assessed by macroscopic scores, histological, qRT-PCR, and immunohistochemical analyses. The effects of ZXHA-TC on inhibiting the production of inflammatory mediators in OA may be mediated partly by the suppression of the PI3K/AKT pathway or MAPK cascades, leading to NF-κB inactivation. Thus, this study indicates that ZXHA-TC may be developed as a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Zhenhui Lu
- Guangxi
Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Huayu Wu
- Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiao Lin
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
- School of
Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Buming Liu
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Cuiwu Lin
- School of
Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Li Zheng
- Guangxi
Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- The
Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi
Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
5
|
Wei S, Lu Z, Zou Y, Lin X, Lin C, Liu B, Zheng L, Zhao J. A Novel Synthesized Sulfonamido-Based Gallate-JEZ-C as Potential Therapeutic Agents for Osteoarthritis. PLoS One 2015; 10:e0125930. [PMID: 26107568 PMCID: PMC4480854 DOI: 10.1371/journal.pone.0125930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/25/2015] [Indexed: 11/24/2022] Open
Abstract
Gallic acid (GA) and its derivatives are anti-inflammatory agents reported to have an effect on osteoarthritis (OA). However, GA has much weaker anti-oxidant effects and inferior bioactivity compared with its derivatives. We modified GA with the introduction of sulfonamide to synthesize a novel compound named JEZ-C and analyzed its anti-arthritis and chondro-protective effects. Comparison of JEZ-C with its sources i.e. GA and Sulfamethoxazole (SMZ) was also performed. Results showed that JEZ-C could effectively inhibit the IL-1-mediated induction of MMP-1 and MMP-13 and could induce the expression of TIMP-1, which demonstrated its ability to reduce the progression of OA. JEZ-C can also exert chondro-protective effects by promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as evidenced by improved cell growth, enhanced synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Meanwhile, expression of the collagen I gene was effectively downregulated, revealing the inhibition of chondrocytes dedifferentiation by JEZ-C. Hypertrophy that may lead to chondrocyte ossification was also undetectable in JEZ-C groups. The recommended dose of JEZ-C ranges from 6.25×10-7 μg/ml to 6.25×10-5 μg/ml, among which the most profound response was observed with 6.25×10-6 μg/ml. In contrast, its source products of GA and SMZ have a weak effect not only in the inhibition of OA but also in the bioactivity of chondrocytes, which indicated the significance of this modification. This study revealed JEZ-C as a promising novel agent in the treatment of chondral and osteochondral lesions.
Collapse
Affiliation(s)
- Shixiu Wei
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Zhenhui Lu
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiao Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, China
| | - Buming Liu
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Li Zheng
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- * E-mail:
| | - Jinmin Zhao
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|