1
|
Kang SJ, Nguyen HS, Lee CK, Kim S, Rhee JS, Jeong SW. Optimization of an autaptic culture system for studying cholinergic synapses in sympathetic ganglia. Pflugers Arch 2024:10.1007/s00424-024-03023-x. [PMID: 39325088 DOI: 10.1007/s00424-024-03023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
An autaptic synapse (or 'autapse') is a functional connection between a neuron and itself, commonly used in studying the molecular mechanisms underlying synaptic transmission and plasticity in central neurons. Most previous studies on autonomic synaptic functions have relied on spontaneous connections among neurons in mass cultures. However, growing evidence supports the utility of microcultures cultivating autaptic neurons for examining cholinergic transmission within sympathetic ganglia. Despite these advancements, standardized protocols for culturing autaptic sympathetic neurons have yet to be established. Drawing on historical literature, this study delineates optimal experimental conditions to efficiently and reliably produce cholinergic synapses in sympathetic neurons within a short time frame. Our research emphasizes five key factors: (i) the generation of uniformly sized microislands of growth permissive substrates; (ii) the addition of nerve growth factor, ciliary neurotrophic factor (CNTF), and serum to the culture medium; (iii) independence from specific serum and neuronal medium types; (iv) the reciprocal roles of CNTF and glial cells; and (v) the promotion of cholinergic synaptogenesis in SCG neurons through indirect glia co-cultures, rather than direct glial feeder layer cultures. In conclusion, glia-free monocultures of SCG neurons are relatively simple to prepare and yield robust and reliable synaptic currents. This makes them an effective model system for straightforwardly addressing fundamental questions about neurogenic mechanisms involved in cholinergic synaptic transmission in autonomic ganglia. Furthermore, autaptic culture experiments could eventually be implemented to investigate the roles of functional neuron-satellite glia units in regulating cholinergic functions under physiological and pathological conditions.
Collapse
Affiliation(s)
- Seong Jun Kang
- Department of Physiology, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, Gangwon-do, Republic of Korea
| | - Huu Son Nguyen
- Department of Physiology, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, Gangwon-do, Republic of Korea
| | - Choong-Ku Lee
- Max-Planck Institute for Multidisciplinary Sciences, City Campus, Synaptic Physiology Group, Göttingen, Germany
| | - Sohyun Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, Gangwon-do, Republic of Korea
| | - Jeong Seop Rhee
- Max-Planck Institute for Multidisciplinary Sciences, City Campus, Synaptic Physiology Group, Göttingen, Germany
| | - Seong-Woo Jeong
- Department of Physiology, Yonsei University Wonju College of Medicine, Ilsan-ro 20, Wonju, Gangwon-do, Republic of Korea.
| |
Collapse
|
2
|
Dos Santos MG, Gomes JR, Costa MDM. Methods used to achieve different levels of the neuronal differentiation process in SH-SY5Y and Neuro2a cell lines: An integrative review. Cell Biol Int 2023; 47:1883-1894. [PMID: 37817323 DOI: 10.1002/cbin.12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
To study the process of neuronal differentiation, the human neuroblastoma (SH-SY5Y) and the murine neuroblastoma (Neuro2a) cell lines have proven to be effective models. For this approach, different protocols involving known neurotrophic factors and other molecules, such as retinoic acid (RA), have been assessed to better understand the neuronal differentiation process. Thus, the goal of this manuscript was to provide a brief overview of recent studies that have used protocols to promote neurodifferentiation in SH-SY5Y and Neuro2a cell lines and used acquired morphology and neuronal markers to validate whether differentiation was effective. The published results supply some guidance regarding the relationship between RA and neurotrophins for SH-SY5Y, as well a serum concentrations for both cell lines. Furthermore, they demonstrate the potential application of Neuro2a, which is critical for future research on neuronal differentiation.
Collapse
Affiliation(s)
- Mônica G Dos Santos
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - José R Gomes
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Michele D M Costa
- Biomedical Science Postgraduate Program, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
3
|
Ogier JM, Burt RA, Drury HR, Lim R, Nayagam BA. Organotypic Culture of Neonatal Murine Inner Ear Explants. Front Cell Neurosci 2019; 13:170. [PMID: 31130846 PMCID: PMC6509234 DOI: 10.3389/fncel.2019.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
The inner ear is a complex organ containing highly specialised cell types and structures that are critical for sensing sound and movement. In vivo, the inner ear is difficult to study due to the osseous nature of the otic capsule and its encapsulation within an intricate bony labyrinth. As such, mammalian inner ear explants are an invaluable tool for the study and manipulation of the complex intercellular connections, structures, and cell types within this specialised organ. The greatest strength of this technique is that the complete organ of Corti, or peripheral vestibular organs including hair cells, supporting cells and accompanying neurons, is maintained in its in situ form. The greatest weakness of in vitro hair cell preparations is the short time frame in which the explanted tissue remains viable. Yet, cochlear explants have proven to be an excellent experimental model for understanding the fundamental aspects of auditory biology, substantiated by their use for over 40 years. In this protocol, we present a modernised inner ear explant technique that employs organotypic cell culture inserts and serum free media. This approach decreases the likelihood of explant damage by eliminating the need for adhesive substances. Serum free media also restricts excessive cellular outgrowth and inter-experimental variability, both of which are side effects of exogenous serum addition to cell cultures. The protocol described can be applied to culture both cochlear and vestibular explants from various mammals. Example outcomes are demonstrated by immunohistochemistry, hair cell quantification, and electrophysiological recordings to validate the versatility and viability of the protocol.
Collapse
Affiliation(s)
- Jacqueline M. Ogier
- Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel A. Burt
- Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Department of Genetics, The University of Melbourne, Parkville, VIC, Australia
| | - Hannah R. Drury
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
- The Bionics Institute, East Melbourne, VIC, Australia
| |
Collapse
|
4
|
Bal-Price A, Pistollato F, Sachana M, Bopp SK, Munn S, Worth A. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol Appl Pharmacol 2018; 354:7-18. [PMID: 29476865 PMCID: PMC6095942 DOI: 10.1016/j.taap.2018.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 01/23/2023]
Abstract
Currently, the identification of chemicals that have the potential to induce developmental neurotoxicity (DNT) is based on animal testing. Since at the regulatory level, systematic testing of DNT is not a standard requirement within the EU or USA chemical legislation safety assessment, DNT testing is only performed in higher tiered testing triggered based on chemical structure activity relationships or evidence of neurotoxicity in systemic acute or repeated dose toxicity studies. However, these triggers are rarely used and, in addition, do not always serve as reliable indicators of DNT, as they are generally based on observations in adult rodents. Therefore, there is a pressing need for developing alternative methodologies that can reliably support identification of DNT triggers, and more rapidly and cost-effectively support the identification and characterization of chemicals with DNT potential. We propose to incorporate mechanistic knowledge and data derived from in vitro studies to support various regulatory applications including: (a) the identification of potential DNT triggers, (b) initial chemical screening and prioritization, (c) hazard identification and characterization, (d) chemical biological grouping, and (e) assessment of exposure to chemical mixtures. Ideally, currently available cellular neuronal/glial models derived from human induced pluripotent stem cells (hiPSCs) should be used as they allow evaluation of chemical impacts on key neurodevelopmental processes, by reproducing different windows of exposure during human brain development. A battery of DNT in vitro test methods derived from hiPSCs could generate valuable mechanistic data, speeding up the evaluation of thousands of compounds present in industrial, agricultural and consumer products that lack safety data on DNT potential.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | | | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), 2 rue André Pascal, 75775 Paris, Cedex 16, France
| | | | - Sharon Munn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
5
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Jackson TC, Kotermanski SE, Jackson EK, Kochanek PM. BrainPhys® increases neurofilament levels in CNS cultures, and facilitates investigation of axonal damage after a mechanical stretch-injury in vitro. Exp Neurol 2017; 300:232-246. [PMID: 29199132 DOI: 10.1016/j.expneurol.2017.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/25/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Abstract
Neurobasal®/B27 is a gold standard culture media used to study primary neurons in vitro. An alternative media (BrainPhys®/SM1) was recently developed which robustly enhances neuronal activity vs. Neurobasal® or DMEM. To the best of our knowledge BrainPhys® has not been explored in the setting of neuronal injury. Here we characterized the utility of BrainPhys® in a model of in vitro mechanical-stretch injury. METHODS/RESULTS Primary rat cortical neurons were maintained in classic Neurobasal®, or sequentially maintained in Neurocult® followed by BrainPhys® (hereafter simply referred to as "BrainPhys® maintained neurons"). The levels of axonal markers and proteins involved in neurotransmission were compared on day in vitro 10 (DIV10). BrainPhys® maintained neurons had higher levels of GluN2B, GluR1, Neurofilament light/heavy chain (NF-L & NF-H), and protein phosphatase 2 A (PP2A) vs. neurons in Neurobasal®. Mechanical stretch-injury (50ms/54% biaxial stretch) to BrainPhys® maintained neurons modestly (albeit significantly) increased 24h lactate dehydrogenase (LDH) levels but markedly decreased axonal NF-L levels post-injury vs. uninjured controls or neurons given a milder 38% stretch-injury. Furthermore, two 54% stretch-injuries (in tandem) exacerbated 24h LDH release, increased α-spectrin breakdown products (SBDPs), and decreased Tau levels. Also, BrainPhys® maintained cultures had decreased markers of cell damage 24h after a single 54% stretch-injury vs. neurons in Neurobasal®. Finally, we tested the hypothesis that lentivirus mediated overexpression of the pro-death protein RBM5 exacerbates neuronal and/or axonal injury in primary CNS cultures. RBM5 overexpression vs. empty-vector controls increased 24h LDH release, and SBDP levels, after a single 54% stretch-injury but did not affect NF-L levels or Tau. CONCLUSION BrainPhys® is a promising new reagent which facilities the investigation of molecular targets involved in axonal and/or neuronal injury in vitro.
Collapse
Affiliation(s)
- Travis C Jackson
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, United States.
| | - Shawn E Kotermanski
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, United States
| | - Edwin K Jackson
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, United States
| | - Patrick M Kochanek
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, United States
| |
Collapse
|
7
|
Boselli M, Lee BH, Robert J, Prado MA, Min SW, Cheng C, Silva MC, Seong C, Elsasser S, Hatle KM, Gahman TC, Gygi SP, Haggarty SJ, Gan L, King RW, Finley D. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J Biol Chem 2017; 292:19209-19225. [PMID: 28972160 DOI: 10.1074/jbc.m117.815126] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is responsible for most selective protein degradation in eukaryotes and regulates numerous cellular processes, including cell cycle control and protein quality control. A component of this system, the deubiquitinating enzyme USP14, associates with the proteasome where it can rescue substrates from degradation by removal of the ubiquitin tag. We previously found that a small-molecule inhibitor of USP14, known as IU1, can increase the rate of degradation of a subset of proteasome substrates. We report here the synthesis and characterization of 87 variants of IU1, which resulted in the identification of a 10-fold more potent USP14 inhibitor that retains specificity for USP14. The capacity of this compound, IU1-47, to enhance protein degradation in cells was tested using as a reporter the microtubule-associated protein tau, which has been implicated in many neurodegenerative diseases. Using primary neuronal cultures, IU1-47 was found to accelerate the rate of degradation of wild-type tau, the pathological tau mutants P301L and P301S, and the A152T tau variant. We also report that a specific residue in tau, lysine 174, is critical for the IU1-47-mediated tau degradation by the proteasome. Finally, we show that IU1-47 stimulates autophagic flux in primary neurons. In summary, these findings provide a powerful research tool for investigating the complex biology of USP14.
Collapse
Affiliation(s)
- Monica Boselli
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Byung-Hoon Lee
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,the Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, 42988 Daegu, Korea
| | - Jessica Robert
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel A Prado
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sang-Won Min
- the Department of Neurology, Gladstone Institute of Neurological Diseases, University of California, San Francisco, California 94158
| | - Chialin Cheng
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Changhyun Seong
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,Regeneron Pharmaceuticals, Tarrytown, New York 10591, and
| | - Suzanne Elsasser
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Ketki M Hatle
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Timothy C Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, California 92093
| | - Steven P Gygi
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Li Gan
- the Department of Neurology, Gladstone Institute of Neurological Diseases, University of California, San Francisco, California 94158
| | - Randall W King
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115,
| | - Daniel Finley
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
8
|
Cotterill E, Hall D, Wallace K, Mundy WR, Eglen SJ, Shafer TJ. Characterization of Early Cortical Neural Network Development in Multiwell Microelectrode Array Plates. JOURNAL OF BIOMOLECULAR SCREENING 2016; 21:510-9. [PMID: 27028607 PMCID: PMC4904353 DOI: 10.1177/1087057116640520] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
Abstract
We examined neural network ontogeny using microelectrode array (MEA) recordings made in multiwell MEA (mwMEA) plates over the first 12 days in vitro (DIV). In primary cortical cultures, action potential spiking activity developed rapidly between DIV 5 and 12. Spiking was sporadic and unorganized at early DIV, and became progressively more organized with time, with bursting parameters, synchrony, and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity; principal components analysis using these features demonstrated segregation of data by age at both the well and plate levels. Using random forest classifiers and support vector machines, we demonstrated that four features (coefficient of variation [CV] of within-burst interspike interval, CV of interburst interval, network spike rate, and burst rate) could predict the age of each well recording with >65% accuracy. When restricting the classification to a binary decision, accuracy improved to as high as 95%. Further, we present a novel resampling approach to determine the number of wells needed for comparing different treatments. Overall, these results demonstrate that network development on mwMEA plates is similar to development in single-well MEAs. The increased throughput of mwMEAs will facilitate screening drugs, chemicals, or disease states for effects on neurodevelopment.
Collapse
Affiliation(s)
- Ellese Cotterill
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Diana Hall
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kathleen Wallace
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - William R Mundy
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Stephen J Eglen
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Timothy J Shafer
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
9
|
Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Neurotoxicol Teratol 2015; 52:181-93. [DOI: 10.1016/j.ntt.2015.09.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022]
|