1
|
Melo WGGD, Bezerra DDO, Silva ERDDFS, Campêlo CB, Carvalho MAMD, Argôlo Neto NM. Behavioral dynamics of medicinal signaling cells from porcine bone marrow in long-term culture. Can J Physiol Pharmacol 2024; 102:672-679. [PMID: 39189463 DOI: 10.1139/cjpp-2023-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Medicinal signaling cells (MSC) hold promise for regenerative medicine due to their ability to repair damaged tissues. However, their effectiveness can be affected by how long they are cultured in the lab. This study investigated how passage number influences key properties for regenerative medicine of pig bone marrow MSC. The medicinal signiling cells derived from pig bone marrow (BM-MSC) were cultured in D-MEM High Glucose supplemented with 15% foetal bovine serum until the 25th passage and assessed their growth, viability, ability to differentiate into different cell types (plasticity), and cell cycle activity. Our findings showed that while the cells remained viable until the 25th passage, their ability to grow and differentiate declined after the 5th passage. Additionally, cells in later passages spent more time in a resting phase, suggesting reduced activity. In conclusion, the number of passages is a critical factor for maintaining ideal MSC characteristics. From the 9th passage BM-MSC exhibit decline in proliferation, differentiation potential, and cell cycle activity. Given this, it is possible to suggest that the use of 5th passage cells is the most suitable for therapeutic applications.
Collapse
Affiliation(s)
- Wanderson Gabriel Gomes de Melo
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Dayseanny de Oliveira Bezerra
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | - Camile Benício Campêlo
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Maria Acelina Martins de Carvalho
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Napoleão Martins Argôlo Neto
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
2
|
da Rocha LBN, Sousa RB, Dos Santos MVB, Neto NMA, da Silva Soares LL, Alves FLC, de Carvalho MAM, Osajima JA, Silva-Filho EC. Development of a new biomaterial based on cashew tree gum (Anarcadium occidentale L.) enriched with hydroxyapatite and evaluation of cytotoxicity in adipose-derived stem cell cultures. Int J Biol Macromol 2023; 242:124864. [PMID: 37192713 DOI: 10.1016/j.ijbiomac.2023.124864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023]
Abstract
Cashew tree gum is a polysaccharide material highly available in the Northeast region of Brazil. It has been explored for biocompatibility with human tissues. This research aimed to describe the synthesis and characterization of cashew gum/hydroxyapatite scaffold and evaluate the possible cytotoxicity in murine adipo-derived stem cells (ADSCs) cultures. ADSCs of the subcutaneous fat tissue of Wistar rats were collected, isolated, expanded, differentiated into three strains, and characterized immunophenotypically. The scaffolds were synthesized through chemical precipitation, lyophilized and characterized through scanning electron microscopy (SEM), infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal analysis (TG and DTG), and mechanical testing. The scaffold presented a crystalline structure and pores with an average diameter of 94.45 ± 50.57 μm. By mechanical tests, the compressive force and modulus of elasticity were like the cancellous bone. The isolated adipose-derived stem cells (ADSCs) presented fibroblast morphology, adhesion capacity to plastic, differentiation in osteogenic, adipogenic and chondrogenic lineages, positive expression for the CD105 and CD90 markers and negative expression for the CD45 and CD14 markers. The MTT test showed increased cell viability, and the biomaterial showed a high level of hemocompatibility (<5 %). This study allowed the development of a new scaffold for future surgical applicability in tissue regeneration.
Collapse
Affiliation(s)
| | - Ricardo Barbosa Sousa
- Federal Institute of Education, Science, and Technology of Tocantins, Campus Araguaina, 56, Amazonas Avenue, 77826-170 Araguaina, TO, Brazil; Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil.
| | | | | | | | | | | | - Josy Anteveli Osajima
- Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil
| | - Edson C Silva-Filho
- Interdisciplinar Laboratory of Advanced Materials, LIMAV, UFPI, Teresina, PI, Brazil
| |
Collapse
|
3
|
Hou Y, Ding W, Wu P, Liu C, Ding L, Liu J, Wang X. Adipose-derived stem cells alleviate liver injury induced by type 1 diabetes mellitus by inhibiting mitochondrial stress and attenuating inflammation. Stem Cell Res Ther 2022; 13:132. [PMID: 35365229 PMCID: PMC8973806 DOI: 10.1186/s13287-022-02760-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/11/2022] [Indexed: 01/30/2023] Open
Abstract
Background Type 1 diabetes mellitus (T1D) is a worldwide health priority due to autoimmune destruction and is associated with an increased risk of multiorgan complications. Among these complications, effective interventions for liver injury, which can progress to liver fibrosis and hepatocellular carcinoma, are lacking. Although stem cell injection has a therapeutic effect on T1D, whether it can cure liver injury and the underlying mechanisms need further investigation. Methods Sprague–Dawley rats with streptozotocin (STZ)-induced T1D were treated with adipose-derived stem cell (ADSC) or PBS via the tail vein formed the ADSC group or STZ group. Body weights and blood glucose levels were examined weekly for 6 weeks. RNA-seq and PCR array were used to detect the difference in gene expression of the livers between groups. Results In this study, we found that ADSCs injection alleviated hepatic oxidative stress and injury and improved liver function in rats with T1D; potential mechanisms included cytokine activity, energy metabolism and immune regulation were potentially involved, as determined by RNA-seq. Moreover, ADSC treatment altered the fibroblast growth factor 21 (FGF21) and transforming growth factor β (TGF-β) levels in T1D rat livers, implying its repair capacity. Disordered intracellular energy metabolism, which is closely related to mitochondrial stress and dysfunction, was inhibited by ADSC treatment. PCR array and ingenuity pathway analyses suggested that the ADSC-induced suppression of mitochondrial stress is related to decreased necroptosis and apoptosis. Moreover, mitochondria-related alterations caused liver inflammation, resulting in liver injury involving the T lymphocyte-mediated immune response. Conclusions Overall, these results improve our understanding of the curative effect of ADSCs on T1D complications: ADSCs attenuate liver injury by inhibiting mitochondrial stress (apoptosis and dysfunctional energy metabolism) and alleviating inflammation (inflammasome expression and immune disorder). These results are important for early intervention in liver injury and for delaying the development of liver lesions in patients with T1D. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02760-z.
Collapse
Affiliation(s)
- Yanli Hou
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Peishan Wu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong First Medical University, Jinan, China
| | - Changqing Liu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Junjun Liu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
4
|
Quantum dots-βcyclodextrin-histidine labeled human adipose stem cells-laden chitosan hydrogel for bone tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 27:102217. [DOI: 10.1016/j.nano.2020.102217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
|
5
|
Filali S, Pirot F, Miossec P. Biological Applications and Toxicity Minimization of Semiconductor Quantum Dots. Trends Biotechnol 2020; 38:163-177. [DOI: 10.1016/j.tibtech.2019.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
|
6
|
Rocha A, Leite Y, Silva A, Conde Júnior A, Costa C, Silva G, Bezerra D, Cavalcante M, Feitosa M, Argôlo Neto N, Serakides R, Carvalho M. Immunophenotyping, plasticity tests and nanotagging of stem cells derived from adipose tissue of wild rodent agouti (Dasyprocta prymnolopha). ARQ BRAS MED VET ZOO 2019. [DOI: 10.1590/1678-4162-10677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
ABSTRACT There is a growing interest in the study of unspecialized mesenchymal stem cells, for there are still some discussions about their in vitro behavior. Regenerative medicine is a science undergoing improvement which develops treatments as cell therapy using somatic stem cells. In several studies, adipose tissue is presented as a source of multipotent adult cells that has several advantages over other tissue sources. This study aimed to characterize and evaluate the tagging of mesenchymal stem cells from the agoutis adipose tissue (Dasyprocta prymonolopha), with fluorescent intracytoplasmic nanocrystals. Fibroblast cells were observed, plastic adherent, with extended self-renewal, ability to form colonies, multipotency by differentiation into three lineages, population CD90 + and CD45 - expression, which issued high red fluorescence after the tagging with fluorescent nanocrystals by different paths and cryopreserved for future use. It is possible to conclude that mesenchymal stem cells from agouti adipose tissue have biological characteristics and in vitro behavior that demonstrate its potential for use in clinical tests.
Collapse
|
7
|
Xia Q, Chen Z, Yu Z, Wang L, Qu J, Liu R. Aggregation-Induced Emission-Active Near-Infrared Fluorescent Organic Nanoparticles for Noninvasive Long-Term Monitoring of Tumor Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17081-17088. [PMID: 29717866 DOI: 10.1021/acsami.8b03861] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Effective long-term monitoring of tumor growth is significant for the evaluation of cancer therapy. Aggregation-induced emission-active near-infrared (NIR) fluorescent organic nanoparticles (TPFE-Rho dots) are designed and synthesized for long-term in vitro cell tracking and in vivo monitoring of tumor growth. TPFE-Rho dots display the advantages of NIR fluorescent emission, large Stokes shift (∼180 nm), good biocompatibility, and high photostability. In vitro cell tracing studies demonstrate that TPFE-Rho dots can track SK-Hep-1 cells over 11 generations. In vivo optical imaging results confirm that TPFE-Rho dots can monitor tumor growth for more than 19 days in a real-time manner. This work indicates that TPFE-Rho dots could act as NIR fluorescent nanoprobes for real-time long-term in situ in vivo monitoring of tumor growth.
Collapse
Affiliation(s)
| | | | | | - Lei Wang
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | | |
Collapse
|