1
|
Song M, Wang H, Liu C, Jin S, Liu B, Sun W. Non-coding RNAs as regulators of the Hippo pathway in cardiac development and cardiovascular disease. Front Pharmacol 2024; 15:1348280. [PMID: 38698813 PMCID: PMC11063341 DOI: 10.3389/fphar.2024.1348280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Cardiovascular diseases pose a serious threat to human health. The onset of cardiovascular diseases involves the comprehensive effects of multiple genes and environmental factors, and multiple signaling pathways are involved in regulating the occurrence and development of cardiovascular diseases. The Hippo pathway is a highly conserved signaling pathway involved in the regulation of cell proliferation, apoptosis, and differentiation. Recently, it has been widely studied in the fields of cardiovascular disease, cancer, and cell regeneration. Non-coding RNA (ncRNAs), which are important small molecules for the regulation of gene expression in cells, can directly target genes and have diverse regulatory functions. Recent studies have found that ncRNAs interact with Hippo pathway components to regulate myocardial fibrosis, cardiomyocyte proliferation, apoptosis, and hypertrophy and play an important role in cardiovascular disease. In this review, we describe the mode of action of ncRNAs in regulating the Hippo pathway, provide new ideas for further research, and identify molecules involved in the mechanism of action of ncRNAs and the Hippo pathway as potential therapeutic targets, with the aim of finding new modes of action for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengyang Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People’s Hospital, Shenyang, China
| | - Sijie Jin
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Yang L, Lin Y, Wang C, Fan P. circSnd1 promotes atherosclerosis progression through the miR-485-3p/Olr1 signaling pathway. Heliyon 2023; 9:e17366. [PMID: 37426804 PMCID: PMC10329125 DOI: 10.1016/j.heliyon.2023.e17366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Background Circular RNAs (circRNAs) participate in the development of atherosclerotic cardiovascular disease. Identifying and verifying the key competing endogenous RNA (ceRNA) network related to atherosclerosis (AS) is significant for understanding the development of AS. The aim of this study was to investigate the circRNA-miRNA‒mRNA network, identify a key circRNA and explore its role in the development of atherosclerosis. Methods Differentially expressed mRNAs (DEMs) and circRNAs (DECs) in the AS model were obtained from datasets in the Gene Expression Omnibus (GEO) database. R software and Cytoscape software were used to construct and visualize the ceRNA network. The dual-luciferase reporter experiment and the RNA pull-down experiment were used to verify the selected ceRNA axis. siRNA targeting circRNA, miRNA mimic, miRNA inhibitor, or gene overexpression plasmid was used for in vitro functional studies. ELISA and western blotting were used to detect inflammation and lipid transport-related proteins. Furthermore, an AS mouse model was established and treated with recombinant adeno-associated viral vectors to further verify the influence of the selected ceRNA axis on the occurrence and/or development of AS. Results A total of 497 DEMs were enriched in 25 pathways, based on which the circ_0082139 (circSnd1)/miR-485-3p/Olr1 axis was selected. In vitro, the interaction among the three molecules of this axis was validated and it was found to affect inflammation and lipid transport, which were characterized by the significant change of inflammatory factors (Il-6, Il-8, Tnf-α, Mcp-1, Vcam-1, and Icam-1), and lipid transport-related genes, including Abca1, Abcg1, Ldlr, Hdlbp, Lp-pla2, and Srebp-1c. Through animal experiments, we further verified that the circSnd1/miR-485-3p/Olr1 axis regulated these molecules and participated in the formation and/or development of AS in vivo. Conclusions The circSnd1/miR-485-3p/Olr1 axis participates in the formation and development of atherosclerosis by regulating inflammation and lipid transport.
Collapse
Affiliation(s)
- Lin Yang
- Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuhao Lin
- Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chao Wang
- Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Pengcheng Fan
- Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
4
|
Ding J, Li H, Liu W, Wang X, Feng Y, Guan H, Chen Z. miR-186-5p Dysregulation in Serum Exosomes from Patients with AMI Aggravates Atherosclerosis via Targeting LOX-1. Int J Nanomedicine 2022; 17:6301-6316. [PMID: 36536941 PMCID: PMC9758944 DOI: 10.2147/ijn.s383904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose The formation of macrophage-derived foam cells via the uptake of modified lipoproteins is a pivotal development event in atherosclerosis. It has been reported that clinical and experimental myocardial infarction could accelerate atherosclerosis. Several studies have suggested the critical role of exosomes in cardiovascular diseases. However, the role of exosomes from patients with acute myocardial infarction (AMI) patients in atherogenesis remains unclear. Patients and Methods Serum exosomes from AMI patients (AMI-Exo) and control individuals (Con-Exo) were isolated and characterized. These exosomes were studied in vitro and in vivo to determine their impact on macrophage foaming and atherogenesis. Results Our results showed that AMI-Exo promoted foam cell formation in oxidized low-density lipoprotein (ox-LDL)-treated macrophages and progression of atherosclerosis in high-fat/cholesterol diet-fed ApoE-/- mice together with a significantly upregulated levels of lectin-like ox-LDL receptor-1 (LOX-1). The miR-186-5p was found to be downregulated in AMI-Exo and macrophages administered with AMI-Exo. Moreover, serum exosomal miR-186-5p achieved high diagnostic performance for AMI. Luciferase reporter assay indicated that miR-186-5p directly inhibited LOX-1. The endogenous or exogenous miR-186-5p deficiency enhanced lipid accumulation by upregulating LOX-1, whereas miR-186-5p mimics had a reverse effect. Conclusion In conclusion, the current findings suggest that dysregulated miR-186-5p in AMI-Exo may explain the contribution of acute ischemia events to the advancement of atherosclerosis by enhancing macrophage foaming via its target, LOX-1.
Collapse
Affiliation(s)
- Jiaxing Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Department of Cardiology, Henan Provincial Key Lab for Control of Coronary Heart Disease, Henan Provincial People’s Hospital Heart Center, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Huili Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wei Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xuehua Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu Feng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hongquan Guan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Correspondence: Zhijian Chen; Hongquan Guan, Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Tel + 86 27 85726011, Fax +86 27 85727340, Email
| | - Zhijian Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
PCSK9 pathway-noncoding RNAs crosstalk: Emerging opportunities for novel therapeutic approaches in inflammatory atherosclerosis. Int Immunopharmacol 2022; 113:109318. [DOI: 10.1016/j.intimp.2022.109318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
6
|
Li Z, Cheng Q, Yu L, He YY, Gao LN, Wang Y, Li L, Cui YL, Gao S, Yu CQ. Dan-Lou tablets reduces inflammatory response via suppression of the MyD88/p38 MAPK/NF-κB signaling pathway in RAW 264.7 macrophages induced by ox-LDL. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115600. [PMID: 35970313 DOI: 10.1016/j.jep.2022.115600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL EVIDENCE The anti-inflammatory effect of Dan-Lou tablets (DLT) have been reported; however, the signaling pathways involved and their role in foam cell formation remains unclear. AIM OF THE STUDY The purpose of this study was to determine the molecular target and mechanism of DLT in the treatment of coronary heart disease (CHD), and investigate the role of DLT in inhibiting foam cell formation and the anti-inflammatory effects of RAW 264.7 macrophages. MATERIALS AND METHODS This study explored and elucidated the main active components, therapeutic targets, and pharmacological mechanisms of DLT treatment for CHD using network pharmacology. Secondly, the accuracy of the interaction of key active compounds with key proteins was verified by molecular docking analysis. Eight chemical compositions were determined from the ethanol extract of DLT (EEDL) by high-performance liquid chromatography. Finally, this study used EEDL intervention with oxidized low-density lipoprotein (ox-LDL) to induce RAW264.7 macrophages to verify the results of network pharmacology. RESULTS According to network pharmacological analysis, 269 common targets of DLT and CHD were obtained from an online database, and 24 key targets were obtained from further analysis. GO enrichment and KEGG analyses were performed, mainly involving the cAMP, cGMP-PKG, MAPK, and NF-κB signaling pathways, and vascular smooth muscle contraction. Molecular docking showed that the active components in DLT docked well with MyD88, NF-κB, and p38 MAPK. The eight compounds from the EEDL have been identified as gallic acid, salvianolic acid, puerarin, daidzein, paeoniflorin, salvianolic acid B, cryptotanshinone, and tanshinone IIA with concentrations of 4.62, 4.76, 23.73, 34.24, 14.59, 21.69, 0.34, and 0.47 μg/mg, respectively. Further in vitro experiments showed that the levels of MyD88 and p-p38 MAPK in RAW 264.7 macrophages induced by ox-LDL increased noticeably. Stimulating the NF-κB signaling pathway increased the release of pro-flammatory factors (TNF-α and IL-1β) and strengthened the inflammatory response (P < 0.05 or P < 0.01), while the levels of MyD88, p38 MAPK, NF-κB, TNF-α, and IL-1β decreased after EEDL treatment (P < 0.05 or P < 0.01). CONCLUSION The study demonstrated that the anti-inflammatory activity of the DLT intervention of ox-LDL-induced RAW 264.7 macrophages may involve the MyD88/p38 MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhu Li
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| | - Qi Cheng
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| | - Lu Yu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| | - Yuan-Yuan He
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| | - Li-Na Gao
- College of Pharmacy, Jining Medical University, Rizhao, China.
| | - Yue Wang
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| | - Yuan-Lu Cui
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| | - Chun-Quan Yu
- Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, China.
| |
Collapse
|
7
|
Ganguly K, Kishore U, Madan T. Interplay between C-type lectin receptors and microRNAs in cellular homeostasis and immune response. FEBS J 2020; 288:4210-4229. [PMID: 33085815 DOI: 10.1111/febs.15603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
C-type lectin receptors (CLRs) belong to the family of pattern recognition receptors (PRRs). They have a critical role to play in the regulation of a range of physiological functions including development, respiration, angiogenesis, inflammation, and immunity. CLRs can recognize distinct and conserved exogenous pathogen-associated as well as endogenous damage-associated molecular patterns. These interactions set off downstream signaling cascades, leading to the production of inflammatory mediators, activation of effector immune cells as well as regulation of the developmental and physiological homeostasis. CLR signaling must be tightly controlled to circumvent the excessive inflammatory burden and to maintain the cellular homeostasis. Recently, MicroRNAs (miRNAs) have been shown to be important regulators of expression of CLRs and their downstream signaling. The delicate balance between miRNAs and CLRs seems crucial in almost all aspects of multicellular life. Any dysregulations in the miRNA-CLR axes may lead to tumorigenesis or inflammatory diseases. Here, we present an overview of the current understanding of the central role of miRNAs in the regulation of CLR expression, profoundly impacting upon homeostasis and immunity, and thus, development of therapeutics against immune disorders.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
8
|
Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage “foam” cells: Implications for atherosclerosis. World J Cardiol 2020; 12:303-333. [PMID: 32843934 PMCID: PMC7415235 DOI: 10.4330/wjc.v12.i7.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of macrophage “foam” cells, laden with cholesterol and cholesteryl ester, within the intima of large arteries, is a hallmark of early “fatty streak” lesions which can progress to complex, multicellular atheromatous plaques, involving lipoproteins from the bloodstream and cells of the innate and adaptive immune response. Sterol accumulation triggers induction of genes encoding proteins mediating the atheroprotective cholesterol efflux pathway. Within the arterial intima, however, this mechanism is overwhelmed, leading to distinct changes in macrophage phenotype and inflammatory status. Over the last decade marked gains have been made in understanding of the epigenetic landscape which influence macrophage function, and in particular the importance of small non-coding micro-RNA (miRNA) sequences in this context. This review identifies some of the miRNA sequences which play a key role in regulating “foam” cell formation and atherogenesis, highlighting sequences involved in cholesterol accumulation, those influencing inflammation in sterol-loaded cells, and novel sequences and pathways which may offer new strategies to influence macrophage function within atherosclerotic lesions.
Collapse
Affiliation(s)
- Richard James Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Janice Marie Walsh Taylor
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Yvonne Dempsie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| |
Collapse
|
9
|
MiR-345-3p attenuates apoptosis and inflammation caused by oxidized low-density lipoprotein by targeting TRAF6 via TAK1/p38/NF-kB signaling in endothelial cells. Life Sci 2020; 241:117142. [DOI: 10.1016/j.lfs.2019.117142] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
|
10
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
11
|
Zhang LS, Zhou YD, Peng YQ, Zeng HL, Yoshida S, Zhao TT. Identification of altered microRNAs in retinas of mice with oxygen-induced retinopathy. Int J Ophthalmol 2019; 12:739-745. [PMID: 31131231 DOI: 10.18240/ijo.2019.05.07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
AIM To identify disease-related miRNAs in retinas of mice with oxygen-induced retinopathy (OIR), and to explore their potential roles in retinal pathological neovascularization. METHODS The retinal miRNA expression profile in mice with OIR and room air controls at postnatal day 17 (P17) were determined through miRNA microarray analysis. Several miRNAs were significantly up- and down-regulated in retinas of mice with OIR compared to controls by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Two databases including Targetscan7.1 and MirdbV5 were used to predict target genes that associated with those significantly altered miRNAs in retinas of mice with OIR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were also conducted to identify possible biological functions of the target genes. RESULTS In comparison with room air controls, 3 and 8 miRNAs were significantly up- and down-regulated, respectively, in retinas of mice with OIR. The qRT-PCR data confirmed that mmu-miR-350-3p and mmu-miR-202-3p were significantly up-regulated, while mmu-miR-711 and mmu-miR-30c-1-3p were significantly down-regulated in mice with OIR compared to controls. GO analysis demonstrated that the identified target genes were related to functions such as cellular macromolecule metabolic process. KEGG pathway analysis showed a group of pathways, such as Wnt signaling pathway, transcriptional misregulation in cancer, Mucin type O-glycan biosynthesis, and mitogen-activated protein kinase (MAPK) signaling pathway might be involved in pathological process of retinal neovascularization. CONCLUSION Our findings suggest that the differentially expressed miRNAs in retinas of mice with OIR might provide potential therapeutic targets for treating retinal neovascularization.
Collapse
Affiliation(s)
- Lu-Si Zhang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Ye-Di Zhou
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Ying-Qian Peng
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Hui-Lan Zeng
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Tan-Tai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| |
Collapse
|
12
|
Zhang J, Liang R, Wang L, Yang B. Effects and mechanisms of Danshen-Shanzha herb-pair for atherosclerosis treatment using network pharmacology and experimental pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:104-114. [PMID: 30312741 DOI: 10.1016/j.jep.2018.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The danshen (the root of Salvia miltiorrhiza Bge.)-shanzha (the fruit of Crataegus pinnatifida Bge. var. major N.E.Br.) (DS) herb combination is a commonly used traditional Chinese medicine with cardiovascular disease (CVD) treatment potential. MATERIALS AND METHODS In this study, we investigated the anti-atherosclerotic effects and mechanisms of DS by the integration of network pharmacology and polypharmacology. Eight main components were selected for target fishing by PharmMapper. RESULTS The network pharmacological study indicated that DS may target 41 proteins and 16 pathways associated with inflammation, lipid metabolism and endothelial protection, which indicates that DS probably adjusts these processes as part of its anti-atherosclerotic activities. Furthermore, this hypothesis was verified by polypharmacology using an atherosclerotic model. Histopathological examination showed that DS inhibited pathological changes in the arteries of atherosclerotic rats and reduced the intima-media thickness (IMT). DS significantly reduced the levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein-cholesterol (LDL-C) and increased the high-density lipoprotein-cholesterol (HDL-C) level in the blood. DS also decreased the concentrations of interleukin (IL)-1β and IL-18, indicating anti-inflammation activity. In addition, DS increased the serum levels of nitric oxide (NO) and 6-keto-prostaglandin F1α (6-keto-PGF1α) and decreased the serum levels of endothelin (ET) and thromboxane B2 (TXB2), indicating an endothelial protective effect. CONCLUSIONS In conclusion, DS has an anti-atherosclerotic ability to lower lipid concentrations and to protect endothelial function, and it also has anti-inflammatory activity.
Collapse
Affiliation(s)
- Jianyong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Rixin Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
MiR-323b-5p acts as a novel diagnostic biomarker for critical limb ischemia in type 2 diabetic patients. Sci Rep 2018; 8:15080. [PMID: 30305681 PMCID: PMC6179988 DOI: 10.1038/s41598-018-33310-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major contributor to peripheral artery disease (PAD), especially in cases that advance to critical limb ischemia (CLI). Accumulating evidence indicates that miRNAs play an important role in the development of PAD and T2DM. Due to the limited value of current diagnostic methods for CLI in T2DM patients, we compared the miRNA expression profiles of Chinese T2DM patients with or without CLI to find out whether distinctive miRNAs could serve as potential diagnostic biomarkers. We statistically identified 7 miRNAs (hsa-miR-200b-3p, hsa-miR-2115-3p, hsa-miR-431-5p, hsa-miR-486-5p, hsa-miR-210-3p, hsa-miR-1264, hsa-miR-323b-5p) which were up-regulated in the CLI group, whereas other 4 miRNAs (hsa-miR-5579-3p, hsa-miR-665, hsa-miR-4285, hsa-miR-500a-3p) were down-regulated. Our validation test suggested a relatively high diagnostic accuracy of serum hsa-miR-323b-5p levels for the detection of CLI in T2DM patients, with a sensitivity of 62.67% and a specificity of 80.65%. The area under the curve (AUC) for miR-323b-5p + confounding risk factors was 0.94 (95% CI: 0.884-0.994, P < 0.001), which was higher than that for miR-323b-5p. Taken together, our results indicate that circulating hsa-miR-323b-5p could be a promising serum biomarker for the diagnosis of critical limb ischemia in type 2 diabetic patients.
Collapse
|