1
|
Jeon YR, Kim MS, Park MH, Lee ST. Enhancement of the transfection efficiency of porcine spermatogonial stem cells by far-infrared radiation-based electroporation. In Vitro Cell Dev Biol Anim 2024; 60:965-968. [PMID: 39145874 DOI: 10.1007/s11626-024-00967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Ye Rin Jeon
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Min Seong Kim
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Department of Molecular and Cellular Physiology, School of Graduate Studies, Louisiana State University Health, Shreveport, LA, 71103, USA
| | - Min Hee Park
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Division of Intractable Diseases Research, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, South Korea
- Korea National Stem Cell Bank, Cheongju, South Korea
| | - Seung Tae Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Dehghan Z, Darya G, Mehdinejadiani S, Derakhshanfar A. Comparison of two methods of sperm- and testis-mediated gene transfer in production of transgenic animals: A systematic review. Anim Genet 2024; 55:328-343. [PMID: 38361185 DOI: 10.1111/age.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Transgenic (Tg) animal technology is one of the growing areas in biology. Various Tg technologies, each with its own advantages and disadvantages, are available for generating Tg animals. These include zygote microinjection, electroporation, viral infection, embryonic stem cell or spermatogonial stem cell-mediated production of Tg animals, sperm-mediated gene transfer (SMGT), and testis-mediated gene transfer (TMGT). However, there are currently no comprehensive studies comparing SMGT and TMGT methods, selecting appropriate gene delivery carriers (such as nanoparticles and liposomes), and determining the optimal route for gene delivery (SMGT and TMGT) for producing Tg animal. Here we aim to provide a comprehensive assessment comparing SMGT and TMGT methods, and to introduce the best carriers and gene transfer methods to sperm and testis to generate Tg animals in different species. From 2010 to 2022, 47 studies on SMGT and 25 studies on TMGT have been conducted. Mice and rats were the most commonly used species in SMGT and TMGT. Regarding the SMGT approach, nanoparticles, streptolysin-O, and virus packaging were found to be the best gene transfer methods for generating Tg mice. In the TMGT method, the best gene transfer methods for generating Tg mice and rats were virus packaging, dimethyl sulfoxide, electroporation, and liposome. Our study has shown that the efficiency of producing Tg animals varies depending on the species, gene carrier, and method of gene transfer.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Darya
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayesteh Mehdinejadiani
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Cheng L, Zhou Z, Li Q, Li W, Li X, Li G, Fan J, Yu L, Yin G. Dendronized chitosan hydrogel with GIT1 to accelerate bone defect repair through increasing local neovascular amount. Bone Rep 2023; 19:101712. [PMID: 37744736 PMCID: PMC10511783 DOI: 10.1016/j.bonr.2023.101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Bone defects have long been a major healthcare issue because of the difficulties in regenerating bone mass volume and the high cost of treatment. G protein-coupled receptor kinase 2 interacting protein 1 (GIT1) has been proven to play an important role both in vascular development and in bone fracture healing. In this study, a type of thermoresponsive injectable hydrogel from oligoethylene glycol-based dendronized chitosan (G1-CS) was loaded with GIT1-plasmids (G1-CS/GIT1), and used to fill unicortical bone defects. RT-PCR analysis confirmed that G1-CS/GIT1 enhanced DNA transfection in MSCs both in vitro and in vivo. From the results of micro-CT, RT-PCR and histological analysis, it can be concluded that G1-CS/GIT1 accelerated the bone healing rate and increased the amount of neovascularization around the bone defects. In addition, an adeno-associated virus (AAV)-GIT1 was constructed to transfect mesenchymal stem cells. The results of capillary tube formation assay, immunofluorescence staining and western blot analysis proved that high expression of GIT1 induces mesenchymal stem cells to differentiate into endothelial cells. RT-PCR analysis and capillary tube formation assay confirmed that the Notch signaling pathway was activated in the differentiation process. Overall, we developed an efficient strategy through combination of injectable hydrogel and G1T1 for bone tissue engineering.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou, Jiangsu Province 221000, China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| | - Zhimin Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| | - Qingqing Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| | - Wen Li
- School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China
| | - Xin Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou, Jiangsu Province 221000, China
| | - Gen Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Huaihai West Road 99, Xuzhou, Jiangsu Province 221000, China
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| | - Lipeng Yu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu Province 210000, China
| |
Collapse
|
4
|
Nakami WN, Nguhiu-Mwangi J, Kipyegon AN, Ogugo M, Muteti C, Kemp S. Comparative Efficiency for in vitro Transfection of Goat Undifferentiated Spermatogonia Using Lipofectamine Reagents and Electroporation. Stem Cells Cloning 2022; 15:11-20. [PMID: 35592658 PMCID: PMC9113451 DOI: 10.2147/sccaa.s356588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/08/2022] [Indexed: 12/01/2022] Open
Abstract
Introduction Spermatogonial stem cells (SSC), also referred to as undifferentiated spermatogonia, are the germline stem cells responsible for continuous spermatogenesis throughout a male’s life. They are, therefore, an ideal target for gene editing. Previously, SSC from animal testis have been isolated and transplanted to homologous recipients resulting in the successful reestablishment of donor-derived spermatogenesis. Methods Enhanced green fluorescent protein (eGFP) gene transfection into goat SSC was evaluated using liposomal carriers and electroporation. The cells were isolated from the prepubertal Galla goats testis cultured in serum-free defined media and transfected with the eGFP gene. Green fluorescing of SSC colonies indicated transfection. Results The use of lipofectamineTM stem reagent and lipofectamineTM 2000 carriers resulted in more SSC colonies expressing the eGFP gene (25.25% and 22.25%, respectively). Electroporation resulted in 15% ± 0.54 eGFP expressing SSC colonies. Furthermore, cell viability was higher in lipofectamine transfection (55% ± 0.21) as compared to electroporation (38% ± 0.14). Conclusion These results indicated that lipofectamine was more effective in eGFP gene transfer into SSC. The successful transient transfection points to a possibility of transfecting transgenes into male germ cells in genetic engineering programs.
Collapse
Affiliation(s)
- Wilkister Nabulindo Nakami
- Livestock Genetics, International Livestock Research Institute, ILRI, Nairobi, Kenya.,Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, Nairobi, Kenya
| | - James Nguhiu-Mwangi
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Ambrose Ng'eno Kipyegon
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Moses Ogugo
- Livestock Genetics, International Livestock Research Institute, ILRI, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, Nairobi, Kenya
| | - Charity Muteti
- Livestock Genetics, International Livestock Research Institute, ILRI, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, Nairobi, Kenya
| | - Stephen Kemp
- Livestock Genetics, International Livestock Research Institute, ILRI, Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, Nairobi, Kenya
| |
Collapse
|
5
|
Sun YZ, Liu ST, Li XM, Zou K. Progress in in vitro culture and gene editing of porcine spermatogonial stem cells. Zool Res 2019; 40:343-348. [PMID: 31393095 PMCID: PMC6755112 DOI: 10.24272/j.issn.2095-8137.2019.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Research on in vitro culture and gene editing of domestic spermatogonial stem cells (SSCs) is of considerable interest but remains a challenging issue in animal science. In recent years, some progress on the isolation, purification, and genetic manipulation of porcine SSCs has been reported. Here, we summarize the characteristics of porcine SSCs as well current advances in their in vitro culture, potential usage, and genetic manipulation. Furthermore, we discuss the current application of gene editing in pig cloning technology. Collectively, this commentary aims to summarize the progress made and obstacles encountered in porcine SSC research to better serve animal husbandry, improve livestock fecundity, and enhance potential clinical use.
Collapse
Affiliation(s)
- Yi-Zhuo Sun
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing Jiangsu 210095, China
| | - Si-Tong Liu
- College of Life Sciences, Jilin University, Changchun Jilin 130012, China
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun Jilin 130024, China
| | - Xiao-Meng Li
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun Jilin 130024, China; E-mail:
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing Jiangsu 210095, China; E-mail:
| |
Collapse
|