1
|
Al-Haidose A, Hassan S, Elhassan M, Ahmed E, Al-Riashi A, Alharbi YM, Ghunaim M, Alhejaili T, Abdallah AM. Role of ncRNAs in the Pathogenesis of Sjögren's Syndrome. Biomedicines 2024; 12:1540. [PMID: 39062113 PMCID: PMC11274537 DOI: 10.3390/biomedicines12071540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Sjögren's syndrome is a multisystemic autoimmune disease that mainly affects the exocrine glands, causing dryness of the eyes and the mouth as the principal symptoms. Non-coding RNAs (ncRNAs), once regarded as genomic "junk", are now appreciated as important molecular regulators of gene expression, not least in Sjögren's syndrome and other autoimmune diseases. Here we review research into the causative roles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) on immunological responses, inflammation, and salivary gland epithelial cell function in Sjögren's syndrome patients. These ncRNAs represent promising new therapeutic targets for treating the disease and possibly as biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Amal Al-Haidose
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Sondoss Hassan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Mahmoud Elhassan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Eiman Ahmed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Abdulla Al-Riashi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| | - Yazeed M. Alharbi
- Department of Internal Medicine, Collage of Medicine, Taibah University, Madinah 42353, Saudi Arabia; (Y.M.A.); (M.G.)
| | - Monther Ghunaim
- Department of Internal Medicine, Collage of Medicine, Taibah University, Madinah 42353, Saudi Arabia; (Y.M.A.); (M.G.)
| | - Talal Alhejaili
- Department of Gastroenterology, King Salman Medical City, Madinah 42319, Saudi Arabia;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; (A.A.-H.); (S.H.); (M.E.); (E.A.); (A.A.-R.)
| |
Collapse
|
2
|
Wang Z, Xu Y, Liang S. Network pharmacology and molecular docking analysis on the mechanism of Tripterygium wilfordii Hook in the treatment of Sjögren syndrome. Medicine (Baltimore) 2024; 103:e37532. [PMID: 38579044 PMCID: PMC10994482 DOI: 10.1097/md.0000000000037532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 04/07/2024] Open
Abstract
Tripterygium wilfordii Hook. F (TWH) has significant anti-inflammatory and immunosuppressive effects, and is widely used in the inflammatory response mediated by autoimmune diseases. However, the multi-target mechanism of TWH action in Sjögren syndrome (SS) remains unclear. Therefore, the aim of this study was to explore the molecular mechanism of TWH in the treatment of SS using network pharmacology and molecular docking methods. TWH active components and target proteins were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. SS-related targets were obtained from the GeneCards database. After overlap, the therapeutic targets of TWH in the treatment of SS were screened. Protein-protein interaction and core target analysis were performed by STRING network platform and Cytoscape software. In addition, the affinity between TWH and the disease target was confirmed by molecular docking. Finally, the DAVID (visualization and integrated) database was used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of overlapping targets. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database shows that TWH contains 30 active components for the treatment of SS. Protein-protein interaction and core target analysis suggested that TNF, MMP9, TGFB1, AKT1, and BCL2 were the key targets of TWH in the treatment of SS. In addition, the molecular docking method confirmed that the bioactive molecules of TWH had a high affinity with the target of SS. Enrichment analysis showed that TWH active components were involved in multiple signaling pathways. Pathways in cancer, Lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic complications is the main pathway. It is associated with a variety of biological processes such as inflammation, apoptosis, immune injury, and cancer. Based on data mining network pharmacology, and molecular docking method validation, TWH is likely to be a promising candidate for the treatment of SS drug, but still need to be further verified experiment.
Collapse
Affiliation(s)
- Zelin Wang
- Department of Laboratory, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanan Xu
- Department of Laboratory, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shufen Liang
- Department of Laboratory, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Talepoor AG, Doroudchi M. Regulatory RNAs in immunosenescence. Immun Inflamm Dis 2024; 12:e1209. [PMID: 38456619 PMCID: PMC10921898 DOI: 10.1002/iid3.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Immunosenescence is a multifactorial stress response to different intrinsic and extrinsic insults that cause immune deterioration and is accompanied by genomic or epigenomic perturbations. It is now widely recognized that genes and proteins contributing in the process of immunosenescence are regulated by various noncoding (nc) RNAs, including microRNAs (miRNAs), long ncRNAs, and circular RNAs. AIMS This review article aimed to evaluate the regulatore RNAs roles in the process of immunosenescence. METHODS We analyzed publications that were focusing on the different roles of regulatory RNAs on the several aspects of immunosenescence. RESULTS In the immunosenescence setting, ncRNAs have been found to play regulatory roles at both transcriptional and post-transcriptional levels. These factors cooperate to regulate the initiation of gene expression programs and sustaining the senescence phenotype and proinflammatory responses. CONCLUSION Immunosenescence is a complex process with pivotal alterations in immune function occurring with age. The extensive network that drive immunosenescence-related features are are mainly directed by a variety of regulatory RNAs such as miRNAs, lncRNAs, and circRNAs. Latest findings about regulation of senescence by ncRNAs in the innate and adaptive immune cells as well as their role in the immunosenescence pathways, provide a better understanding of regulatory RNAs function in the process of immunosenescence.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
- Autoimmune Diseases Research CenterUniversity of Medical SciencesShirazIran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
4
|
Kamounah S, Sembler-Møller ML, Nielsen CH, Pedersen AML. Sjögren's syndrome: novel insights from proteomics and miRNA expression analysis. Front Immunol 2023; 14:1183195. [PMID: 37275849 PMCID: PMC10232878 DOI: 10.3389/fimmu.2023.1183195] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Sjögren's syndrome (SS) is a systemic autoimmune disease, which affects the exocrine glands leading to glandular dysfunction and, particularly, symptoms of oral and ocular dryness. The aetiology of SS remains unclear, and the disease lacks distinctive clinical features. The current diagnostic work-up is complex, invasive and often time-consuming. Thus, there is an emerging need for identifying disease-specific and, ideally, non-invasive immunological and molecular biomarkers that can simplify the diagnostic process, allow stratification of patients, and assist in monitoring the disease course and outcome of therapeutic intervention in SS. Methods This systematic review addresses the use of proteomics and miRNA-expression profile analyses in this regard. Results and discussion Out of 272 papers that were identified and 108 reviewed, a total of 42 papers on proteomics and 23 papers on miRNA analyses in saliva, blood and salivary gland tissue were included in this review. Overall, the proteomic and miRNA studies revealed considerable variations with regard to candidate biomarker proteins and miRNAs, most likely due to variation in sample size, processing and analytical methods, but also reflecting the complexity of SS and patient heterogeneity. However, interesting novel knowledge has emerged and further validation is needed to confirm their potential role as biomarkers in SS.
Collapse
Affiliation(s)
- Sarah Kamounah
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Lynn Sembler-Møller
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Rheumatology and Spine Diseases, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anne Marie Lynge Pedersen
- Section for Oral Biology and Immunopathology/Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Evolving understandings for the roles of non-coding RNAs in autoimmunity and autoimmune disease. J Autoimmun 2022:102948. [DOI: 10.1016/j.jaut.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
6
|
Potential Mechanisms of White Peony against Primary Sjögren’s Syndrome Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5507472. [PMID: 35990826 PMCID: PMC9391099 DOI: 10.1155/2022/5507472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/19/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022]
Abstract
Background Multiple system and organ damage occurs with the continuous progression of primary Sjögren's syndrome (pSS), and the lack of specific drugs against this disease is a huge challenge. White peony (WP), a widely used traditional Chinese herb, has been confirmed to have a therapeutic value in pSS. However, the specific mechanisms of WP in the treatment of pSS are unknown. Methods The active ingredients and their targets in WP were searched on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and disease-related targets were collected from GeneCards, Online Mendelian Inheritance in Man (OMIM), and the Therapeutic Target Database (TTD). The overlapping targets were acquired by taking the intersection. A protein-protein interaction (PPI) network was structured using the STRING database. A disease-drug-ingredient-target (D-D-I-T) network was built using Cytoscape software. By filtering twice, core targets were acquired. Gene Ontology (GO) and Kyoto Encyclopedia Gene and Genome (KEGG) pathway enrichment analysis were accompanied by R packages. Finally, molecular docking was used to verify the abovementioned results. Results In total, we screened 88 WP-related targets, 1480 pSS-related targets, and 32 overlapping targets. D-D-I-T Network analysis displayed six main active ingredients of WP, which played a significant therapeutic role in pSS. Further topological analysis selected seven core target genes, including IL-6, TNF, PPARγ, AKT1, CASP3, NOS3, and JUN. GO and KEGG analysis were used to elucidate pharmacological mechanisms, mainly acting in the AGE-RAGE signaling pathway. Molecular docking proved that paeoniflorin bound well with core targets. Conclusion Our study revealed that IL-6, TNF, AKT1, CASP3, NOS3, and JUN may be pathogenic target genes, and PPARγ may be a protective target gene. The main active ingredients of WP mainly played a therapeutic role via the AGE-RAGE signaling pathway. These findings provide a fundamental and theoretical basis for the clinical application of WP.
Collapse
|
7
|
Rani A, Barter J, Kumar A, Stortz JA, Hollen M, Nacionales D, Moldawer LL, Efron PA, Foster TC. Influence of age and sex on microRNA response and recovery in the hippocampus following sepsis. Aging (Albany NY) 2022; 14:728-746. [PMID: 35094981 PMCID: PMC8833110 DOI: 10.18632/aging.203868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Sepsis, defined as a dysregulated host immune response to infection, is a common and dangerous clinical syndrome. The excessive host inflammatory response can induce immediate and persistent cognitive decline, which can be worse in older individuals. Sex-specific differences in the outcome of infectious diseases and sepsis appear to favor females. We employed a murine model to examine the influence of age and sex on the brain's microRNA (miR) response following sepsis. Young and old mice of both sexes underwent cecal ligation and puncture (CLP) with daily restraint stress. Expression of hippocampal miR was examined in age- and sex-matched controls at 1 and 4 days post-CLP. Few miR were modified in a similar manner across age or sex and these few miR were generally associated with neuroprotection against inflammation. Similar to previous work examining transcription, young females exhibited a better recovery of the miR profile from day 1 to day 4, relative to young males and old females. For young males and all female groups, the initial response mainly involved a decrease in miR expression. In contrast, old males exhibited only upregulated miR on day 1 and day 4 and many of the miR upregulated on day 1 and day 4 were linked to neurodegeneration, increased neuroinflammation, and cognitive impairment. The results emphasize age and sex differences in epigenetic mechanisms that likely contribute to susceptibility or resilience to cognitive impairment due to sepsis.
Collapse
Affiliation(s)
- Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jolie Barter
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Stortz
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - McKenzie Hollen
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Dina Nacionales
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.,Genetics and Genomics Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Ren Y, Cui G, Gao Y. Research progress on inflammatory mechanism of primary Sjögren syndrome. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:783-794. [PMID: 35347914 PMCID: PMC8931614 DOI: 10.3724/zdxbyxb-2021-0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/30/2021] [Indexed: 06/14/2023]
Abstract
Primary Sjögren syndrome is an autoimmune disease, in which a large number of lymphocytes infiltrate the exocrine glands and cause gland dysfunction. Its pathogenesis is related to the chronic inflammation of the exocrine glands caused by genetic factors, immunodeficiency or viral infection. Long-term inflammation leads to accelerated apoptosis of epithelial cells, disordered gland structure, increased expression of proinflammatory cytokine such as CXC subfamily ligand (CXCL) 12, CXCL13, B cell-activating factor (BAF), interleukin (IL)-6, interferon (IFN)-γ and tumor necrosis factor (TNF)-α in submandibular gland. With the action of antigen-presenting cells such as dendritic cells and macrophages, lymphocytes (mainly B cells) are induced to mature in secondary lymphoid organs and migrate to the submandibular gland to promotes the formation of germinal centers and the synthesis of autoantibodies. Meanwhile, innate lymphocytes, vascular endothelial cells and mucosa-associated constant T cells as important immune cells, also participated in the inflammatory response of the submandibular gland in primary Sjögren syndrome through different mechanisms. This process involves the activation of multiple signal pathways such as JAK/STAT, MAPK/ERK, PI3K/AKT/mTOR, PD-1/PD-L1, TLR/MyD88/NF-κB, BAF/BAF-R and IFN. These signaling pathways interact with each other and are intricately complex, causing lymphocytes to continuously activate and invade the submandibular glands. This article reviews the latest literature to clarify the mechanism of submandibular gland inflammation in primary Sjögren syndrome, and to provide insights for further research.
Collapse
|
9
|
Taheri M, Barth DA, Kargl J, Rezaei O, Ghafouri-Fard S, Pichler M. Emerging Role of Non-Coding RNAs in Regulation of T-Lymphocyte Function. Front Immunol 2021; 12:756042. [PMID: 34804042 PMCID: PMC8599985 DOI: 10.3389/fimmu.2021.756042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
T-lymphocytes (T cells) play a major role in adaptive immunity and current immune checkpoint inhibitor-based cancer treatments. The regulation of their function is complex, and in addition to cytokines, receptors and transcription factors, several non-coding RNAs (ncRNAs) have been shown to affect differentiation and function of T cells. Among these non-coding RNAs, certain small microRNAs (miRNAs) including miR-15a/16-1, miR-125b-5p, miR-99a-5p, miR-128-3p, let-7 family, miR-210, miR-182-5p, miR-181, miR-155 and miR-10a have been well recognized. Meanwhile, IFNG-AS1, lnc-ITSN1-2, lncRNA-CD160, NEAT1, MEG3, GAS5, NKILA, lnc-EGFR and PVT1 are among long non-coding RNAs (lncRNAs) that efficiently influence the function of T cells. Recent studies have underscored the effects of a number of circular RNAs, namely circ_0001806, hsa_circ_0045272, hsa_circ_0012919, hsa_circ_0005519 and circHIPK3 in the modulation of T-cell apoptosis, differentiation and secretion of cytokines. This review summarizes the latest news and regulatory roles of these ncRNAs on the function of T cells, with widespread implications on the pathophysiology of autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dominik A Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
10
|
De Benedittis G, Ciccacci C, Latini A, Novelli L, Novelli G, Borgiani P. Emerging Role of microRNAs and Long Non-Coding RNAs in Sjögren's Syndrome. Genes (Basel) 2021; 12:genes12060903. [PMID: 34208031 PMCID: PMC8230573 DOI: 10.3390/genes12060903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sjögren’s Syndrome (SS) is a chronic autoimmune inflammatory disease. It is considered a multifactorial pathology, in which underlying genetic predisposition, epigenetic mechanisms and environmental factors contribute to development. The epigenetic regulations represent a link between genetic predisposition and environmental factors. Recent studies suggested a regulatory role for non-coding RNAs in critical biological and disease processes. Among non-coding RNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) play a critical role in the post-transcriptional mRNA expression, forming a complex network of gene expression regulation. This review aims to give an overview of the latest studies that have investigated the role of miRNAs and lncRNAs in the SS. We included papers that investigated the expression of non-coding RNAs on different tissues, in particular on peripheral blood mononuclear cells and salivary glands. However, regarding the involvement of non-coding RNAs genetic variability in SS susceptibility very few data are available. Further research could help to elucidate underlying pathogenic processes of SS and provide new opportunities for the development of targeted therapies.
Collapse
Affiliation(s)
- Giada De Benedittis
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy; (G.D.B.); (A.L.); (G.N.); (P.B.)
| | - Cinzia Ciccacci
- UniCamillus–Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
- Correspondence: ; Tel.: +39-06-7259-6090
| | - Andrea Latini
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy; (G.D.B.); (A.L.); (G.N.); (P.B.)
| | - Lucia Novelli
- UniCamillus–Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Giuseppe Novelli
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy; (G.D.B.); (A.L.); (G.N.); (P.B.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Paola Borgiani
- Department of Biomedicine & Prevention, Genetics Section, University of Rome Tor Vergata, 00133 Rome, Italy; (G.D.B.); (A.L.); (G.N.); (P.B.)
| |
Collapse
|
11
|
Liu Y, Yang Y, Ding L, Jia Y, Ji Y. LncRNA MIR4435-2HG inhibits the progression of osteoarthritis through miR-510-3p sponging. Exp Ther Med 2020; 20:1693-1701. [PMID: 32742398 PMCID: PMC7388355 DOI: 10.3892/etm.2020.8841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is a disorder of diarthrodial joints that can have multiple causes. Long non-coding RNAs (lncRNAs) participate in multiple diseases, including OA. It has recently been reported that the lncRNA microRNA 4435-2HG (MIR4435-2HG) is downregulated in OA tissues; however, the biological role of MIR4435-2HG during OA progression remains unclear. In the present study, interleukin (IL)-1β was used to establish an in vitro model of OA. Protein expressions of matrix metallopeptidase (MMP) 1, MMP13, collagen II, interleukin (IL)-17A, p65, phosphorylated (p)-p65, IκB and p-IκB in CHON-001 cells were detected by western blotting. Gene expressions of IL-17A, MIR4435-2HG and miR-510-3p in tissues or CHON-001 cells were measured by reverse transcription-quantitative PCR and western blotting, respectively. Cell Counting Kit-8 assay and immunofluorescence staining were used to investigate cell proliferation, and cell apoptosis was detected by flow cytometry. The association between MIR4435-2HG, miR-510-3p and IL-17A was investigated using the dual luciferase report assay. MIR4435-2HG and miR-510-3p overexpression were transfected into CHON-001 cells. The results demonstrated that miR4435-2HG overexpression significantly increased proliferation and inhibited apoptosis of CHON-001 cells. In addition, miR-510-3p was identified as the downstream target of MIR4435-2HG, and miR-510-3p directly targeted IL-17A. The results from the present study suggested that MIR4435-2HG could mediate the progression of OA by inactivating the NF-κB signaling pathway. In addition, miR4435-2HG overexpression inhibited OA progression, suggesting that miR4435-2HG may be considered as a potential therapeutic target in OA.
Collapse
Affiliation(s)
- Yingli Liu
- Rehabilitation Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010000, P.R. China
| | - Yun Yang
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Liangjia Ding
- Department of Joint Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Yuqin Jia
- Department of ICU (Intensive Care Unit), The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Yuntao Ji
- Department of Education office, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| |
Collapse
|