1
|
Yan J, Mehta S, Patel K, Dhupar N, Little N, Ong Tone S. Transcription factor 4 promotes increased corneal endothelial cellular migration by altering microtubules in Fuchs endothelial corneal dystrophy. Sci Rep 2024; 14:10276. [PMID: 38704483 PMCID: PMC11069521 DOI: 10.1038/s41598-024-61170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a complex corneal disease characterized by the progressive decline and morphological changes of corneal endothelial cells (CECs) that leads to corneal edema and vision loss. The most common mutation in FECD is an intronic CTG repeat expansion in transcription factor 4 (TCF4) that leads to its altered expression. Corneal endothelial wound healing occurs primarily through cell enlargement and migration, and FECD CECs have been shown to display increased migration speeds. In this study, we aim to determine whether TCF4 can promote cellular migration in FECD CECs. We generated stable CEC lines derived from FECD patients that overexpressed different TCF4 isoforms and investigated epithelial-to-mesenchymal (EMT) expression, morphological analysis and cellular migration speeds. We found that full length TCF4-B isoform overexpression promotes cellular migration in FECD CECs in an EMT-independent manner. RNA-sequencing identified several pathways including the negative regulation of microtubules, with TUBB4A (tubulin beta 4A class IVa) as the top upregulated gene. TUBB4A expression was increased in FECD ex vivo specimens, and there was altered expression of cytoskeleton proteins, tubulin and actin, compared to normal healthy donor ex vivo specimens. Additionally, there was increased acetylation and detyrosination of microtubules in FECD supporting that microtubule stability is altered in FECD and could promote cellular migration. Future studies could be aimed at investigating if targeting the cytoskeleton and microtubules would have therapeutic potential for FECD by promoting cellular migration and regeneration.
Collapse
Affiliation(s)
- Judy Yan
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
| | - Shanti Mehta
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Keya Patel
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Narisa Dhupar
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ness Little
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Stephan Ong Tone
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Liu S, Chen H, Xie H, Liu X, Zhang M. Substrate Stiffness Modulates Stemness and Differentiation of Rabbit Corneal Endothelium Through the Paxillin-YAP Pathway. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38466286 DOI: 10.1167/iovs.65.3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Purpose To explore the role of substrate stiffness and the mechanism beneath corneal endothelial cells' (CECs') stemness maintenance and differentiation. Methods CECs were divided into central zone (8 mm trephined boundary) and peripheral zone (8 mm trephined edge with attached limbal). Two zones were analyzed by hematoxylin-eosin staining and scanning electron microscopy for anatomic structure. The elastic modulus of Descemet's membrane (DM) was analyzed by atomic force microscopy. Compressed type I collagen gels with different stiffness were constructed as an in vitro model system to test the role of stiffness on phenotype using cultured rabbit CECs. Cell morphology, expression and intracellular distribution of Yes-associated protein (YAP), differentiation (ZO-1, Na+/K+-ATPase), stemness (FOXD3, CD34, Sox2, Oct3/4), and endothelial-mesenchymal transition (EnMT) markers were analyzed by immunofluorescence, quantitative RT-PCR, and Western blot. Results The results showed that the peripheral area of rabbit and human DM is softer than the central area ex vivo. Using the biomimetic extracellular matrix collagen gels in vitro model, we then demonstrated that soft substrate weakens the differentiation and EnMT in the culture of CECs. It was further proved by the inhibitor experiment that soft substrate enhances stemness maintenance via inhibition of paxillin-YAP signaling, which was activated on a stiff substrate. Conclusions Our findings confirm that substrate stiffness modulates the stemness maintenance and differentiation of CECs and suggest a potential strategy for CEC-based corneal tissue engineering.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Chen
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Huatao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Kopecny LR, Lee BWH, Coroneo MT. A systematic review on the effects of ROCK inhibitors on proliferation and/or differentiation in human somatic stem cells: A hypothesis that ROCK inhibitors support corneal endothelial healing via acting on the limbal stem cell niche. Ocul Surf 2023; 27:16-29. [PMID: 36586668 DOI: 10.1016/j.jtos.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Rho kinase inhibitors (ROCKi) have attracted growing multidisciplinary interest, particularly in Ophthalmology where the question as to how they promote corneal endothelial healing remains unresolved. Concurrently, stem cell biology has rapidly progressed in unravelling drivers of stem cell (SC) proliferation and differentiation, where mechanical niche factors and the actin cytoskeleton are increasingly recognized as key players. There is mounting evidence from the study of the peripheral corneal endothelium that supports the likelihood of an internal limbal stem cell niche. The possibility that ROCKi stimulate the endothelial SC niche has not been addressed. Furthermore, there is currently a paucity of data that directly evaluates whether ROCKi promotes corneal endothelial healing by acting on this limbal SC niche located near the transition zone. Therefore, we performed a systematic review examining the effects ROCKi on the proliferation and differentiation of human somatic SC, to provide insight into its effects on various human SC populations. An appraisal of electronic searches of four databases identified 1 in vivo and 58 in vitro studies (36 evaluated proliferation while 53 examined differentiation). Types of SC studied included mesenchymal (n = 32), epithelial (n = 11), epidermal (n = 8), hematopoietic and other (n = 8). The ROCK 1/2 selective inhibitor Y-27632 was used in almost all studies (n = 58), while several studies evaluated ≥2 ROCKi (n = 4) including fasudil, H-1152, and KD025. ROCKi significantly influenced human somatic SC proliferation in 81% of studies (29/36) and SC differentiation in 94% of studies (50/53). The present systemic review highlights that ROCKi are influential in regulating human SC proliferation and differentiation, and provides evidence to support the hypothesis that ROCKi promotes corneal endothelial division and maintenance via acting on the inner limbal SC niche.
Collapse
Affiliation(s)
- Lloyd R Kopecny
- School of Clinical Medicine, University of New South Wales, Sydney, Australia.
| | - Brendon W H Lee
- Department of Ophthalmology, School of Clinical Medicine, University of New South Wales, Level 2 South Wing, Edmund Blacket Building, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Minas T Coroneo
- Department of Ophthalmology, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
4
|
Ying PX, Fu M, Huang C, Li ZH, Mao QY, Fu S, Jia XH, Cao YC, Hong LB, Cai LY, Guo X, Liu RB, Meng FK, Yi GG. Profile of biological characterizations and clinical application of corneal stem/progenitor cells. World J Stem Cells 2022; 14:777-797. [PMID: 36483848 PMCID: PMC9724387 DOI: 10.4252/wjsc.v14.i11.777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal stem/progenitor cells are typical adult stem/progenitor cells. The human cornea covers the front of the eyeball, which protects the eye from the outside environment while allowing vision. The location and function demand the cornea to maintain its transparency and to continuously renew its epithelial surface by replacing injured or aged cells through a rapid turnover process in which corneal stem/progenitor cells play an important role. Corneal stem/progenitor cells include mainly corneal epithelial stem cells, corneal endothelial cell progenitors and corneal stromal stem cells. Since the discovery of corneal epithelial stem cells (also known as limbal stem cells) in 1971, an increasing number of markers for corneal stem/progenitor cells have been proposed, but there is no consensus regarding the definitive markers for them. Therefore, the identification, isolation and cultivation of these cells remain challenging without a unified approach. In this review, we systematically introduce the profile of biological characterizations, such as anatomy, characteristics, isolation, cultivation and molecular markers, and clinical applications of the three categories of corneal stem/progenitor cells.
Collapse
Affiliation(s)
- Pei-Xi Ying
- Department of Ophthalmology, Zhujiang Hospital, The Second Clinical School, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200030, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200030, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200030, China
| | - Zhi-Hong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510550, Guangdong Province, China
| | - Qing-Yi Mao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng Fu
- Hengyang Medical School, The University of South China, Hengyang 421001, Hunan Province, China
| | - Xu-Hui Jia
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yu-Chen Cao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Bing Hong
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Yang Cai
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xi Guo
- Medical College of Rehabilitation, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ru-Bing Liu
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Fan-ke Meng
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Guo-Guo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
5
|
Spinozzi D, Miron A, Bruinsma M, Dapena I, Kocaba V, Jager MJ, Melles GRJ, Ni Dhubhghaill S, Oellerich S. New developments in corneal endothelial cell replacement. Acta Ophthalmol 2021; 99:712-729. [PMID: 33369235 DOI: 10.1111/aos.14722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Corneal transplantation is currently the most effective treatment to restore corneal clarity in patients with endothelial disorders. Endothelial transplantation, either by Descemet membrane endothelial keratoplasty (DMEK) or by Descemet stripping (automated) endothelial keratoplasty (DS(A)EK), is a surgical approach that replaces diseased Descemet membrane and endothelium with tissue from a healthy donor eye. Its application, however, is limited by the availability of healthy donor tissue. To increase the pool of endothelial grafts, research has focused on developing new treatment options as alternatives to conventional corneal transplantation. These treatment options can be considered as either 'surgery-based', that is tissue-efficient modifications of the current techniques (e.g. Descemet stripping only (DSO)/Descemetorhexis without endothelial keratoplasty (DWEK) and Quarter-DMEK), or 'cell-based' approaches, which rely on in vitro expansion of human corneal endothelial cells (hCEC) (i.e. cultured corneal endothelial cell sheet transplantation and cell injection). In this review, we will focus on the most recent developments in the field of the 'cell-based' approaches. Starting with the description of aspects involved in the isolation of hCEC from donor tissue, we then describe the different natural and bioengineered carriers currently used in endothelial cell sheet transplantation, and finally, we discuss the current 'state of the art' in novel therapeutic approaches such as endothelial cell injection.
Collapse
Affiliation(s)
- Daniele Spinozzi
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| | - Alina Miron
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| | - Marieke Bruinsma
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| | - Isabel Dapena
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
| | - Viridiana Kocaba
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
- Tissue Engineering and Stem Cell Group Singapore Eye Research Institute Singapore Singapore
| | - Martine J. Jager
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
| | - Gerrit R. J. Melles
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
- Amnitrans EyeBank Rotterdam The Netherlands
| | - Sorcha Ni Dhubhghaill
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
- Melles Cornea Clinic Rotterdam The Netherlands
- Antwerp University Hospital (UZA) Edegem Belgium
| | - Silke Oellerich
- Netherlands Institute for Innovative Ocular Surgery Rotterdam The Netherlands
| |
Collapse
|
6
|
Regenerative capacity of the corneal transition zone for endothelial cell therapy. Stem Cell Res Ther 2020; 11:523. [PMID: 33276809 PMCID: PMC7716425 DOI: 10.1186/s13287-020-02046-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium located on the posterior corneal surface is responsible for regulating stromal hydration. This is contributed by a monolayer of corneal endothelial cells (CECs), which are metabolically active in a continuous fluid-coupled efflux of ions from the corneal stroma into the aqueous humor, preventing stromal over-hydration and preserving the orderly arrangement of stromal collagen fibrils, which is essential for corneal transparency. Mature CECs do not have regenerative capacity and cell loss due to aging and diseases results in irreversible stromal edema and a loss of corneal clarity. The current gold standard of treatment for this worldwide blindness caused by corneal endothelial failure is the corneal transplantation using cadaveric donor corneas. The top indication is Fuchs corneal endothelial dystrophy/degeneration, which represents 39% of all corneal transplants performed. However, the global shortage of transplantable donor corneas has restricted the treatment outcomes, hence instigating a need to research for alternative therapies. One such avenue is the CEC regeneration from endothelial progenitors, which have been identified in the peripheral endothelium and the adjacent transition zone. This review examines the evidence supporting the existence of endothelial progenitors in the posterior limbus and summarizes the existing knowledge on the microanatomy of the transitional zone. We give an overview of the isolation and ex vivo propagation of human endothelial progenitors in the transition zone, and their growth and differentiation capacity to the corneal endothelium. Transplanting these bioengineered constructs into in vivo models of corneal endothelial degeneration will prove the efficacy and viability, and the long-term maintenance of functional endothelium. This will develop a novel regenerative therapy for the management of corneal endothelial diseases.
Collapse
|
7
|
Phenotypic and functional characterization of corneal endothelial cells during in vitro expansion. Sci Rep 2020; 10:7402. [PMID: 32366916 PMCID: PMC7198491 DOI: 10.1038/s41598-020-64311-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
The advent of cell culture-based methods for the establishment and expansion of human corneal endothelial cells (CEnC) has provided a source of transplantable corneal endothelium, with a significant potential to challenge the one donor-one recipient paradigm. However, concerns over cell identity remain, and a comprehensive characterization of the cultured CEnC across serial passages has not been performed. To this end, we compared two established CEnC culture methods by assessing the transcriptomic changes that occur during in vitro expansion. In confluent monolayers, low mitogenic culture conditions preserved corneal endothelial cell state identity better than culture in high mitogenic conditions. Expansion by continuous passaging induced replicative cell senescence. Transcriptomic analysis of the senescent phenotype identified a cell senescence signature distinct for CEnC. We identified activation of both classic and new cell signaling pathways that may be targeted to prevent senescence, a significant barrier to realizing the potential clinical utility of in vitro expansion.
Collapse
|
8
|
Increasing Donor Endothelial Cell Pool by Culturing Cells from Discarded Pieces of Human Donor Corneas for Regenerative Treatments. J Ophthalmol 2019; 2019:2525384. [PMID: 31428467 PMCID: PMC6679880 DOI: 10.1155/2019/2525384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/19/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose To investigate if the peripheral corneal endothelium that is usually discarded after a corneal transplant could be used for endothelial cell culture. Methods Donor corneas (n = 19) with a mean age of 72 years, male : female ratio of 15 : 4, and death-to-preservation time of 10 hours were assessed for endothelial cell density (ECD) and number of dead cells before isolation. Alizarin red staining (n = 3) was performed to check the morphology of cells in the center and periphery. Descemet's membrane-endothelial complex was peeled from the center (8.25 mm) and the periphery (2.75 mm) and plated in two different wells of an 8-well chamber slide with media refreshed every alternate day. The confluence rate was monitored by microscopy. Live/dead analysis was performed (n = 3) at confluence. Tag-2A12 as a monoclonal antibody against peroxiredoxin-6 (Prdx-6) (n = 4), ZO-1 (zonula occludens-1) as a tight junction protein (n = 4), and Ki-67 as a proliferative cell marker (n = 4) were used to characterize the cells at confluence. Results At confluence, 8.25% average increase in the number of cells was observed from the central zone compared with 16.5% from the peripheral zone. Proliferation rate, hexagonality, Ki-67 positivity, and the cell area did not significantly differ between the groups (p > 0.05). All the proteins corresponding to the biomarkers tested were expressed in both the groups. Conclusions Although there are significantly fewer amounts of peripheral cells available after graft preparation for keratoplasty, these cells can still be used for endothelial cell culture due to their proliferative capability. The peripheral cells that are discarded after graft preparation can thus be utilized to increase the donor endothelial cell pool for regenerative treatments.
Collapse
|
9
|
Culturing Discarded Peripheral Human Corneal Endothelial Cells From the Tissues Deemed for Preloaded DMEK Transplants. Cornea 2019; 38:1175-1181. [DOI: 10.1097/ico.0000000000001998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Peripheral Endothelial Cell Density in Descemet Membrane Endothelial Keratoplasty Grafts. Cornea 2019; 38:748-753. [DOI: 10.1097/ico.0000000000001925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Kocaba V, Damour O, Auxenfans C, Burillon C. [Corneal endothelial cell therapy, a review]. J Fr Ophtalmol 2018; 41:462-469. [PMID: 29773311 DOI: 10.1016/j.jfo.2018.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
In France, endothelial dysfunction represents approximately one half of the indications for corneal transplants performed each year. However, the use of endothelial keratoplasty is limited by the technical difficulty of the procedure, a shortage of available grafts, and the potential for graft failure or rejection. These limitations are driving researchers to develop new, less invasive, and more effective therapies. Corneal endothelial cell therapy is being explored as a potential therapeutic measure, to avoid the uncertainty associated with grafting. The human cornea is an ideal tissue for cell therapy. Due to its avascular and immunologically privileged characteristics, transplanted cells are better tolerated compared with other vascularized tissues and organs. Advances in the field of stem cell engineering, particularly the development of corneal epithelial stem cell therapy for the treatment of severe ocular surface disease, have aroused a massive interest in adapting cell therapy techniques to corneal endothelial cells. This chapter, based on a review of the literature, aims at educating the reader on the latest research in the field of corneal endothelial cell therapy.
Collapse
Affiliation(s)
- V Kocaba
- Service d'ophtalmologie, pavillon C, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France; Université Claude-Bernard Lyon-1, 69100 Villeurbanne, France; Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France; Cornea Center of Excellence, The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, États-Unis; Tissue Engineering and stem cell group, Singapore Eye Research Institute, 168751 Singapour.
| | - O Damour
- Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France
| | - C Auxenfans
- Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France
| | - C Burillon
- Service d'ophtalmologie, pavillon C, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France; Université Claude-Bernard Lyon-1, 69100 Villeurbanne, France; Banque de cornée de Lyon, pavillon I, hôpital Edouard-Herriot, 5, place d'Arsonval, 69003 Lyon, France
| |
Collapse
|
12
|
Al Abdulsalam NK, Barnett NL, Harkin DG, Walshe J. Cultivation of corneal endothelial cells from sheep. Exp Eye Res 2018; 173:24-31. [PMID: 29680447 DOI: 10.1016/j.exer.2018.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
Abstract
Research is currently under way to produce tissue engineered corneal endothelium transplants for therapeutic use in humans. This work requires the use of model animals, both for the supply of corneal endothelial cells (CECs) for experimentation, and to serve as recipients for test transplants. A variety of species can be used, however, a number of important advantages can be gained by using sheep as transplant recipients. The purpose of the present study was therefore to develop a method for culturing sheep CECs that would be suitable for the eventual construction of corneal endothelium grafts destined for sheep subjects. A method was established for culturing sheep CECs and these were compared to cultured human CECs. Results showed that cultured sheep and human CECs had similar growth characteristics when expanded from corneal endothelium explants on gelatin-coated plates, and achieved similar cell densities after several weeks. Furthermore, the markers zonula occludens-1, N-cadherin and sodium potassium ATPase could be immunodetected in similar staining patterns at cell boundaries of cultured CECs from both species. This work represents the first detailed study of sheep CEC cultures, and is the first demonstration of their similarities to human CEC cultures. Our results indicate that sheep CECs would be an appropriate substitute for human CECs when developing methods to produce tissue engineered corneal endothelium transplants.
Collapse
Affiliation(s)
- Najla Khaled Al Abdulsalam
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101, Australia; School of Biomedical Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia; King Faisal University, Hofuf, Saudi Arabia
| | - Nigel L Barnett
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101, Australia; School of Biomedical Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia; The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, 4029, Australia
| | - Damien G Harkin
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101, Australia; School of Biomedical Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland, 4001, Australia
| | - Jennifer Walshe
- Queensland Eye Institute, 140 Melbourne Street, South Brisbane, Queensland, 4101, Australia.
| |
Collapse
|
13
|
Smeringaiova I, Reinstein Merjava S, Stranak Z, Studeny P, Bednar J, Jirsova K. Endothelial Wound Repair of the Organ-Cultured Porcine Corneas. Curr Eye Res 2018; 43:856-865. [PMID: 29648937 DOI: 10.1080/02713683.2018.1458883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To assess whether injured porcine endothelium of small and large corneoscleral disc differ in its reparative/regenerative capacity under various conditions of organ culture storage. MATERIAL AND METHODS 166 paired porcine corneas were trephined to obtain tissues with diameter 12.0 mm and 17.5 mm (with area neighboring endothelial periphery). In tested discs, central endothelium was mechanically wounded. Density of live endothelial cells (LECD), percentage of dead cells (%DC), coefficient of variation and cell hexagonality were assessed in central and paracentral endothelium following 5- or 9-day incubation in medium with 2% or 10% fetal bovine serum. The parameters were assessed also in fresh and intact cultured discs. Dead endothelial cells (EC) were visualized by trypan blue, cell borders by Alizarin Red S dye. Endothelial imprints were immunoassayed for the proliferation marker Ki-67 and the nucleolar marker fibrillarin. RESULTS In fresh corneas, the LECD/mm2 (mean ± standard deviation) were 3998.0 ± 215.4 (central area) and 3888.2 ± 363.1 (paracentral area). Only the length of storage had significant effect on wound repair. Lesion was repaired partially after 5-day and fully after 9-day cultivation. After 9-day storage in medium with 10% serum, the mean LECD detected in small discs were 2409.4 ± 881.8 (central area) and 3949.5 ± 275.5 (paracentral area) and in large discs the mean LECD were 2555.0 ± 347.0 (central area) and 4007.5 ± 261.2 (paracentral area). Ki-67 showed cell proliferation associated with healing of EC of both large and small corneas. CONCLUSIONS The lesions were completely repaired within 9 days of storage. Presence of the area, where stem cells appear to be located, contributes to stimulation of endothelial reparation less than serum concentration and time of culture. Both cell migration and proliferation contribute to the wound repair.
Collapse
Affiliation(s)
- Ingrida Smeringaiova
- a Laboratory of the Biology and Pathology of the Eye, Clinic of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic.,b Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Stanislava Reinstein Merjava
- a Laboratory of the Biology and Pathology of the Eye, Clinic of Pediatrics and Adolescent Medicine, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Zbynek Stranak
- c Department of Ophthalmology, Third Faculty of Medicine , Charles University and University Hospital Kralovske Vinohrady , Prague , Czech Republic
| | - Pavel Studeny
- c Department of Ophthalmology, Third Faculty of Medicine , Charles University and University Hospital Kralovske Vinohrady , Prague , Czech Republic
| | - Jan Bednar
- b Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| | - Katerina Jirsova
- b Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Prague , Czech Republic
| |
Collapse
|
14
|
Van den Bogerd B, Dhubhghaill SN, Koppen C, Tassignon MJ, Zakaria N. A review of the evidence for in vivo corneal endothelial regeneration. Surv Ophthalmol 2017; 63:149-165. [PMID: 28782549 DOI: 10.1016/j.survophthal.2017.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Human corneal endothelium has long been thought to be a nonmitotic cell layer with no endogenous reparative potential. Pathologies that damage endothelial function result in corneal decompensation and, if untreated, blindness. The mainstay of treatment involves partial or complete corneal replacement, amounting to 40% of all corneal transplants performed worldwide. We summarize the case reports describing complications postoperatively in the form of (sub)total graft detachment and those resulting in postoperative bare stroma. Complications during cataract and glaucoma surgeries leading to an uncovered posterior cornea are also included. We discuss the newer treatment strategies that are alternatives for current Descemet membrane endothelial keratoplasty and Descemet stripping automated endothelial keratoplasty, including partial grafts and stripping of the diseased cell layer. In more than half of the cases reviewed, corneal transparency returned despite incomplete or no corneal endothelial cell transplantation. We question the existing paradigm concerning corneal endothelial wound healing in vivo. The data support further clinical study to determine the safety of simple descemethorexis in central endothelial pathologies, such as Fuchs endothelial corneal dystrophy, where presence of healthy peripheral cells may allow successful corneal recompensation without the need for donor cells.
Collapse
Affiliation(s)
- Bert Van den Bogerd
- Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sorcha Ní Dhubhghaill
- Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Carina Koppen
- Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Marie-José Tassignon
- Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Nadia Zakaria
- Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
15
|
High-Resolution Optical Coherence Tomography in the Differentiation of Inflammatory Versus Noninflammatory Peripheral Corneal Thinning. Cornea 2017; 36:48-52. [PMID: 27631347 DOI: 10.1097/ico.0000000000001023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate whether high-resolution optical coherence tomography (HR-OCT) can aid in differentiation of inflammatory versus noninflammatory causes of peripheral corneal thinning. METHODS Retrospective chart review of 10 patients with peripheral corneal thinning and their respective slit-lamp photographs and HR-OCT images. RESULTS Ten patients were identified who had peripheral corneal thinning and HR-OCT images. Five had a clinical history consistent with Terrien marginal degeneration (TMD), whereas 5 had thinning believed to be inflammatory in origin. In the eyes with presumed TMD, patients denied pain or inflammation. HR-OCT images demonstrated stromal thinning in the presence of an intact epithelium. The stroma underneath the epithelium in the area of thinning had a similar reflectivity pattern as the nonaffected cornea. There was epithelial marsupialization evident in 2 of the 5 images. In the 4 patients with a clinical history of inflammation (bulbar hyperemia and pain), and in the 1 patient with active inflammation at the time of HR-OCT imaging, HR-OCT also demonstrated thinning with an intact epithelium. In contrast to the TMD group, in the group with signs of inflammation, a dense hyperreflective band was noted in the stroma directly below the epithelium in the area of thinning, suggestive of scarring and/or cellular infiltration. CONCLUSIONS In patients with a clinical history of inflammation and corneal thinning, HR-OCT revealed a hyperreflective band directly under the epithelium in the area of thinning, which was not seen in patients with presumed noninflammatory melts and thinning.
Collapse
|
16
|
Molecular and Histopathological Changes Associated with Keratoconus. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7803029. [PMID: 28251158 PMCID: PMC5303843 DOI: 10.1155/2017/7803029] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Keratoconus (KC) is a corneal thinning disorder that leads to loss of visual acuity through ectasia, opacity, and irregular astigmatism. It is one of the leading indicators for corneal transplantation in the Western countries. KC usually starts at puberty and progresses until the third or fourth decade; however its progression differs among patients. In the keratoconic cornea, all layers except the endothelium have been shown to have histopathological structural changes. Despite numerous studies in the last several decades, the mechanisms of KC development and progression remain unclear. Both genetic and environmental factors may contribute to the pathogenesis of KC. Many previous articles have reviewed the genetic aspects of KC, but in this review we summarize the histopathological features of different layers of cornea and discuss the differentially expressed proteins in the KC-affected cornea. This summary will help emphasize the major molecular defects in KC and identify additional research areas related to KC, potentially opening up possibilities for novel methods of KC prevention and therapeutic intervention.
Collapse
|
17
|
Vázquez N, Chacón M, Rodríguez-Barrientos CA, Merayo-Lloves J, Naveiras M, Baamonde B, Alfonso JF, Zambrano-Andazol I, Riestra AC, Meana Á. Human Bone Derived Collagen for the Development of an Artificial Corneal Endothelial Graft. In Vivo Results in a Rabbit Model. PLoS One 2016; 11:e0167578. [PMID: 27907157 PMCID: PMC5131948 DOI: 10.1371/journal.pone.0167578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022] Open
Abstract
Corneal keratoplasty (penetrating or lamellar) using cadaveric human tissue, is nowadays the main treatment for corneal endotelial dysfunctions. However, there is a worldwide shortage of donor corneas available for transplantation and about 53% of the world's population have no access to corneal transplantation. Generating a complete cornea by tissue engineering is still a tough goal, but an endothelial lamellar graft might be an easier task. In this study, we developed a tissue engineered corneal endothelium by culturing human corneal endothelial cells on a human purified type I collagen membrane. Human corneal endothelial cells were cultured from corneal rims after corneal penetrating keratoplasty and type I collagen was isolated from remnant cancellous bone chips. Isolated type I collagen was analyzed by western blot, liquid chromatography -mass spectrometry and quantified using the exponentially modified protein abundance index. Later on, collagen solution was casted at room temperature obtaining an optically transparent and mechanically manageable membrane that supports the growth of human and rabbit corneal endothelial cells which expressed characteristic markers of corneal endothelium: zonula ocluddens-1 and Na+/K+ ATPase. To evaluate the therapeutic efficiency of our artificial endothelial grafts, human purified type I collagen membranes cultured with rabbit corneal endothelial cells were transplanted in New Zealand white rabbits that were kept under a minimal immunosuppression regimen. Transplanted corneas maintained transparency for as long as 6 weeks without obvious edema or immune rejection and maintaining the same endothelial markers that in a healthy cornea. In conclusion, it is possible to develop an artificial human corneal endothelial graft using remnant tissues that are not employed in transplant procedures. This artificial endothelial graft can restore the integrality of corneal endothelium in an experimental model of endothelial dysfunction. This strategy could supply extra endothelial tissue and compensate the deficit of cadaveric grafts for corneal endothelial transplantation.
Collapse
Affiliation(s)
- Natalia Vázquez
- Instituto Universitario Fernández-Vega. Universidad de Oviedo (Spain)
| | - Manuel Chacón
- Instituto Universitario Fernández-Vega. Universidad de Oviedo (Spain)
| | | | | | - Miguel Naveiras
- Instituto Universitario Fernández-Vega. Universidad de Oviedo (Spain)
| | - Begoña Baamonde
- Instituto Universitario Fernández-Vega. Universidad de Oviedo (Spain)
- Hospital Universitario Central de Asturias (Spain)
| | - Jose F. Alfonso
- Instituto Universitario Fernández-Vega. Universidad de Oviedo (Spain)
| | | | - Ana C. Riestra
- Instituto Universitario Fernández-Vega. Universidad de Oviedo (Spain)
| | - Álvaro Meana
- Instituto Universitario Fernández-Vega. Universidad de Oviedo (Spain)
- CIBER on rare disease–CIBERer. Instituto de Investigaciones Sanitarias de la Fundación Jiménez Díaz–IIS-FJD (Spain)
| |
Collapse
|
18
|
Abstract
Corneal integrity is essential for visual function. Transplantation remains the most common treatment option for advanced corneal diseases. A global donor material shortage requires a search for alternative treatments. Different stem cell populations have been induced to express corneal cell characteristics in vitro and in animal models. Yet before their application to humans, scientific and ethical issues need to be solved. The in vitro propagation and implantation of primary corneal cells has been rapidly evolving with clinical practices of limbal epithelium transplantation and a clinical trial for endothelial cells in progress, implying cultivated ocular cells as a promising option for the future. This review reports on the latest developments in primary ocular cell and stem cell research for corneal therapy.
Collapse
Affiliation(s)
- Matthias Fuest
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, RWTH Aachen University, Aachen, Germany
| | - Gary Hin-Fai Yam
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-ACP, Duke-NUS Graduate Medical School, Singapore
| | - Gary Swee-Lim Peh
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-ACP, Duke-NUS Graduate Medical School, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering & Stem Cell Group, Singapore Eye Research Institute, Singapore.,Eye-ACP, Duke-NUS Graduate Medical School, Singapore.,Singapore National Eye Centre, Singapore.,School of Materials Science & Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Navaratnam J, Utheim TP, Rajasekhar VK, Shahdadfar A. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium. J Funct Biomater 2015; 6:917-45. [PMID: 26378588 PMCID: PMC4598685 DOI: 10.3390/jfb6030917] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
Corneal endothelium is a single layer of specialized cells that lines the posterior surface of cornea and maintains corneal hydration and corneal transparency essential for vision. Currently, transplantation is the only therapeutic option for diseases affecting the corneal endothelium. Transplantation of corneal endothelium, called endothelial keratoplasty, is widely used for corneal endothelial diseases. However, corneal transplantation is limited by global donor shortage. Therefore, there is a need to overcome the deficiency of sufficient donor corneal tissue. New approaches are being explored to engineer corneal tissues such that sufficient amount of corneal endothelium becomes available to offset the present shortage of functional cornea. Although human corneal endothelial cells have limited proliferative capacity in vivo, several laboratories have been successful in in vitro expansion of human corneal endothelial cells. Here we provide a comprehensive analysis of different substrates employed for in vitro cultivation of human corneal endothelial cells. Advances and emerging challenges with ex vivo cultured corneal endothelial layer for the ultimate goal of therapeutic replacement of dysfunctional corneal endothelium in humans with functional corneal endothelium are also presented.
Collapse
Affiliation(s)
- Jesintha Navaratnam
- Department of Ophthalmology, Oslo University Hospital, Postbox 4950 Nydalen, Oslo 0424, Norway.
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Postbox 4950 Nydalen, Oslo 0424, Norway.
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Postbox 1052, Blindern, Oslo 0316, Norway.
| | - Vinagolu K Rajasekhar
- Memorial Sloan Kettering Cancer Center, Rockefeller Research Building, Room 1163, 430 East 67th Street/1275 York Avenue, New York, NY 10065, USA.
| | - Aboulghassem Shahdadfar
- Department of Ophthalmology, Oslo University Hospital, Postbox 4950 Nydalen, Oslo 0424, Norway.
| |
Collapse
|
20
|
de Araujo AL, Gomes JP. Corneal stem cells and tissue engineering: Current advances and future perspectives. World J Stem Cells 2015; 7:806-814. [PMID: 26131311 PMCID: PMC4478627 DOI: 10.4252/wjsc.v7.i5.806] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/05/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there are many challenges ahead given the singularities of each cellular layer of the cornea. This review recapitulates the current data on corneal epithelial stem cells, corneal stromal stem cells and corneal endothelial cell progenitors. Corneal limbal autografts containing epithelial stem cells have been transplanted in humans for more than 20 years with great successful rates, and researchers now focus on ex vivo cultures and other cell lineages to transplant to the ocular surface. A small population of cells in the corneal endothelium was recently reported to have self-renewal capacity, although they do not proliferate in vivo. Two main obstacles have hindered endothelial cell transplantation to date: culture protocols and cell delivery methods to the posterior cornea in vivo. Human corneal stromal stem cells have been identified shortly after the recognition of precursors of endothelial cells. Stromal stem cells may have the potential to provide a direct cell-based therapeutic approach when injected to corneal scars. Furthermore, they exhibit the ability to deposit organized connective tissue in vitro and may be useful in corneal stroma engineering in the future. Recent advances and future perspectives in the field are discussed.
Collapse
|
21
|
Moloney G, Chan UT, Hamilton A, Zahidin AM, Grigg JR, Devasahayam RN. Descemetorhexis for Fuchs’ dystrophy. Can J Ophthalmol 2015; 50:68-72. [DOI: 10.1016/j.jcjo.2014.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/02/2014] [Accepted: 10/21/2014] [Indexed: 12/13/2022]
|
22
|
Hirata-Tominaga K, Nakamura T, Okumura N, Kawasaki S, Kay EP, Barrandon Y, Koizumi N, Kinoshita S. Corneal Endothelial Cell Fate Is Maintained by LGR5 Through the Regulation of Hedgehog and Wnt Pathway. Stem Cells 2013; 31:1396-407. [DOI: 10.1002/stem.1390] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 03/04/2013] [Indexed: 12/13/2022]
|
23
|
He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, Peoc'h M, Piselli S, Garraud O, Thuret G. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells 2013; 30:2523-34. [PMID: 22949402 DOI: 10.1002/stem.1212] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The control of corneal transparency depends on the integrity of its endothelial monolayer, which is considered nonregenerative in adult humans. In pathological situations, endothelial cell (EC) loss, not offset by mitosis, can lead to irreversible corneal edema and blindness. However, the hypothesis of a slow, clinically insufficient regeneration starting from the corneal periphery remains debatable. The authors have re-evaluated the microanatomy of the endothelium in order to identify structures likely to support this homeostasis model. Whole endothelia of 88 human corneas (not stored, and stored in organ culture) with mean donor age of 80 ± 12 years were analyzed using an original flat-mounting technique. In 61% of corneas, cells located at the extreme periphery (last 200 μm of the endothelium) were organized in small clusters with two to three cell layers around Hassall-Henle bodies. In 68% of corneas, peripheral ECs formed centripetal rows 830 ± 295 μm long, with Descemet membrane furrows visible by scanning electron microscopy. EC density was significantly higher in zones with cell rows. When immunostained, ECs in the extreme periphery exhibited lesser differentiation (ZO-1, Actin, Na/K ATPase, CoxIV) than ECs in the center of the cornea but preferentially expressed stem cell markers (Nestin, Telomerase, and occasionally breast cancer resistance protein) and, in rare cases, the proliferation marker Ki67. Stored corneas had fewer cell clusters but more Ki67-positive ECs. We identified a novel anatomic organization in the periphery of the human corneal endothelium, suggesting a continuous slow centripetal migration, throughout life, of ECs from specific niches.
Collapse
Affiliation(s)
- Zhiguo He
- Corneal Graft Biology, Engineering and Imaging Laboratory, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zavala J, López Jaime GR, Rodríguez Barrientos CA, Valdez-Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye (Lond) 2013; 27:579-88. [PMID: 23470788 DOI: 10.1038/eye.2013.15] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The main treatment available for restoration of the corneal endothelium is keratoplasty. This procedure is faced with several difficulties, including the shortage of donor tissue, post-surgical complications associated with the use of drugs to prevent immune rejection, and a significant increase in the occurrence of glaucoma. Recently, surgical procedures such as Descemet's stripping endothelial keratoplasty have focused on the transplant of corneal endothelium, yielding better visual results but still facing the need for donor tissue. The emergent strategies in the field of cell biology and tissue cultivation of corneal endothelial cells aim at the production of transplantable endothelial cell sheets. Cell therapy focuses on the culture of corneal endothelial cells retrieved from the donor, in the donor's cornea, followed by transplantation into the recipient. Recently, research has focused on overcoming the challenge of harvesting human corneal endothelial cells and the generation of new biomembranes to be used as cell scaffolds in surgical procedures. The use of corneal endothelial precursors from the peripheral cornea has also demonstrated to be effective and represents a valuable tool for reducing the risk of rejection in allogeneic transplants. Several animal model reports also support the use of adult stem cells as therapy for corneal diseases. Current results represent important progresses in the development of new strategies based on alternative sources of tissue for the treatment of corneal endotheliopathies. Different databases were used to search literature: PubMed, Google Books, MD Consult, Google Scholar, Gene Cards, and NCBI Books. The main search terms used were: 'cornea AND embryology AND transcription factors', 'human endothelial keratoplasty AND risk factors', '(cornea OR corneal) AND (endothelium OR endothelial) AND cell culture', 'mesenchymal stem cells AND cell therapy', 'mesenchymal stem cells AND cornea', and 'stem cells AND (cornea OR corneal) AND (endothelial OR endothelium)'.
Collapse
Affiliation(s)
- J Zavala
- Ophthalmology Research Chair, Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, México
| | | | | | | |
Collapse
|
25
|
Sabater AL, Guarnieri A, Espana EM, Li W, Prósper F, Moreno-Montañés J. Strategies of human corneal endothelial tissue regeneration. Regen Med 2013; 8:183-95. [DOI: 10.2217/rme.13.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
26
|
Mimura T, Yamagami S, Amano S. Corneal endothelial regeneration and tissue engineering. Prog Retin Eye Res 2013; 35:1-17. [PMID: 23353595 DOI: 10.1016/j.preteyeres.2013.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/05/2013] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
Abstract
Human corneal endothelial cells (HCECs) have a limited proliferative capacity. Descemet stripping with automated endothelial keratoplasty (DSAEK) has become the preferred method for the treatment of corneal endothelial deficiency, but it requires a donor cornea. To overcome the shortage of donor corneas, transplantation of cultured HCEC sheets has been attempted in experimental studies. This review summarizes current knowledge about the mechanisms of corneal endothelial wound healing and about tissue engineering for the corneal endothelium. We also discuss recent work on tissue engineering for DSAEK grafts using cultured HCECs and HCEC precursor cell isolation method (the sphere-forming assay). DSAEK grafts (HCEC sheets) were constructed by seeding cultured HCECs on human amniotic membrane, thin human corneal stroma, and collagen sheets. The pump function of the HCEC sheets thus obtained was approximately 75%-95% of that for human donor corneas. HCEC sheets were transplanted onto rabbit corneas after DSAEK. While the untransplanted control group displayed severe stromal edema, the transplanted group had clear corneas throughout the observation period. The sphere-forming assay using donor human corneal endothelium or cultured HCECs can achieved mass production of human corneal endothelial precursors. These findings indicate that cultured HCECs transplanted after DSAEK can perform effective corneal dehydration in vivo and suggest the feasibility of employing the transplantation of cultured HCECs to treat endothelial dysfunction. Additionally, corneal endothelial precursors may be an effective strategy for corneal endothelial regeneration.
Collapse
Affiliation(s)
- Tatsuya Mimura
- Department of Ophthalmology, Tokyo Women's Medical University Medical Center East, 2-1-10 Nishiogu, Arakawa-ku, Tokyo 116-8567, Japan.
| | | | | |
Collapse
|
27
|
Peh GSL, Lee MX, Wu FY, Toh KP, Balehosur D, Mehta JS. Optimization of human corneal endothelial cells for culture: the removal of corneal stromal fibroblast contamination using magnetic cell separation. Int J Biomater 2012; 2012:601302. [PMID: 22287967 PMCID: PMC3263628 DOI: 10.1155/2012/601302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 12/13/2022] Open
Abstract
The culture of human corneal endothelial cells (CECs) is critical for the development of suitable graft alternative on biodegradable material, specifically for endothelial keratoplasty, which can potentially alleviate the global shortage of transplant-grade donor corneas available. However, the propagation of slow proliferative CECs in vitro can be hindered by rapid growing stromal corneal fibroblasts (CSFs) that may be coisolated in some cases. The purpose of this study was to evaluate a strategy using magnetic cell separation (MACS) technique to deplete the contaminating CSFs from CEC cultures using antifibroblast magnetic microbeads. Separated "labeled" and "flow-through" cell fractions were collected separately, cultured, and morphologically assessed. Cells from the "flow-through" fraction displayed compact polygonal morphology and expressed Na(+)/K(+)ATPase indicative of corneal endothelial cells, whilst cells from the "labeled" fraction were mostly elongated and fibroblastic. A separation efficacy of 96.88% was observed. Hence, MACS technique can be useful in the depletion of contaminating CSFs from within a culture of CECs.
Collapse
Affiliation(s)
| | - Man-Xin Lee
- Singapore Eye Research Institute, Singapore 168751
| | - Fei-Yi Wu
- Singapore Eye Research Institute, Singapore 168751
| | - Kah-Peng Toh
- Singapore Eye Research Institute, Singapore 168751
| | | | - Jodhbir S. Mehta
- Singapore Eye Research Institute, Singapore 168751
- Singapore National Eye Centre, Singapore 168751
- Duke-NUS Graduate Medical School Singapore, Singapore 169857
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|
28
|
Long-term corneal endothelial cell changes in pediatric intraocular lens reposition and exchange cases. Graefes Arch Clin Exp Ophthalmol 2011; 250:547-55. [PMID: 22005791 DOI: 10.1007/s00417-011-1837-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To evaluate long-term corneal endothelial cell changes of intraocular lens (IOL) reposition and exchange in children. SETTING State key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China METHODS In this retrospective study, all IOL reposition and exchange procedures performed in patients under 14 years old between January 1999 and April 2009 were included. Follow-up outcomes included corneal endothelial cell density, hexagonality, coefficient of variance, average cell size. RESULTS IOL reposition procedures in 12 eyes (12 cases) (reposition group, RPG), and IOL exchanges in eight eyes (eight cases) (exchange group, EXG) were performed because of IOL pupillary capture or IOL dislocation. Median of follow-up was 44.5 months in RPG and 66.2 months in EXG. The density of corneal endothelial cells in RPG (2,053 ± 493/mm(2)) and EXG (2,100 ± 758/mm(2)) was significantly decreased in comparison to the control eyes (3,116 ± 335/mm(2)). Hexagonality of corneal endothelial cells and coefficient of variance showed no difference among the control group, RPG and EXG (P > 0.05). CONCLUSIONS The density of corneal endothelial cells was conspicuously decreased after IOL reposition or exchange procedures in childhood cases. Longer follow-up must be conducted in these cases.
Collapse
|
29
|
Proliferative capacity of corneal endothelial cells. Exp Eye Res 2011; 95:16-23. [PMID: 21906590 DOI: 10.1016/j.exer.2011.08.014] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/10/2011] [Accepted: 08/23/2011] [Indexed: 12/11/2022]
Abstract
The corneal endothelial monolayer helps maintain corneal transparency through its barrier and ionic "pump" functions. This transparency function can become compromised, resulting in a critical loss in endothelial cell density (ECD), corneal edema, bullous keratopathy, and loss of visual acuity. Although penetrating keratoplasty and various forms of endothelial keratoplasty are capable of restoring corneal clarity, they can also have complications requiring re-grafting or other treatments. With the increasing worldwide shortage of donor corneas to be used for keratoplasty, there is a greater need to find new therapies to restore corneal clarity that is lost due to endothelial dysfunction. As a result, researchers have been exploring alternative approaches that could result in the in vivo induction of transient corneal endothelial cell division or the in vitro expansion of healthy endothelial cells for corneal bioengineering as treatments to increase ECD and restore visual acuity. This review presents current information regarding the ability of human corneal endothelial cells (HCEC) to divide as a basis for the development of new therapies. Information will be presented on the positive and negative regulation of the cell cycle as background for the studies to be discussed. Results of studies exploring the proliferative capacity of HCEC will be presented and specific conditions that affect the ability of HCEC to divide will be discussed. Methods that have been tested to induce transient proliferation of HCEC will also be presented. This review will discuss the effect of donor age and endothelial topography on relative proliferative capacity of HCEC, as well as explore the role of nuclear oxidative DNA damage in decreasing the relative proliferative capacity of HCEC. Finally, potential new research directions will be discussed that could take advantage of and/or improve the proliferative capacity of these physiologically important cells in order to develop new treatments to restore corneal clarity.
Collapse
|
30
|
Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation 2011; 91:811-9. [PMID: 21358368 DOI: 10.1097/tp.0b013e3182111f01] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The monolayer of cells forming the human corneal endothelium is critical to the maintenance of corneal transparency and is not known to regenerate in vivo. Thus, dysfunction of these cells constitutes the most often cited reasons for the 150,000 or so corneal transplants performed yearly. Although current corneal transplantation is more than 90% successful at 1 year, longer term results are not as encouraging with approximately 70% success at 5 years. Nonimmunologic graft failure and allograft endothelial rejection are the main problems. Furthermore, the global shortage of donor corneas greatly restricts several corneal transplantations performed. With advances in understanding corneal endothelial cell biology, it is now possible to cultivate human corneal endothelial cells (HCECs) in vitro, thus providing new opportunities to develop novel tissue-engineered human corneal endothelium. This review will provide an overview of (a) the characteristics of human corneal endothelium; (b) past and present HCECs isolation and culture protocols; (c) various potential carriers for the generation of tissue-engineered corneal endothelium, together with some of the functional studies reported in various animal models; and (d) the current rapid advancements in surgical techniques for keratoplasty. A successful combination of tissue-engineered human corneal endothelium coupled with innovative and groundbreaking surgical procedures will bridge basic research involving cultured HCECs, bringing it from bench to bedside.
Collapse
|
31
|
Valtink M, Gruschwitz R, Funk RHW, Engelmann K. Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics. Cells Tissues Organs 2008; 187:286-94. [PMID: 18196893 DOI: 10.1159/000113406] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2007] [Indexed: 12/13/2022] Open
Abstract
Access to primary human corneal endothelial cells (HCEC) is limited and donor-derived differences between cultures exacerbate the issue of data reproducibility, whereas cell lines can provide sufficient numbers of homogenous cells for multiple experiments. An immortalized HCEC population was adapted to serum-free culture medium and repeated cloning was performed. Clonally grown cells were propagated under serum-free conditions and growth curves were recorded. Cells were characterized immunocytochemically for junctional proteins, collagens, Na,K-ATPase and HCEC-specific 9.3.E-antigen. Ultrastructure was monitored by scanning and transmission electron microscopy. Two clonal cell lines, HCEC-B4G12 and HCEC-H9C1, could be isolated and expanded, which differed morphologically: B4G12 cells were polygonal, strongly adherent and formed a strict monolayer, H9C1 cells were less adherent and formed floating spheres. The generation time of B4G12 cells was 62.26 +/- 14.5 h and that of H9C1 cells 44.05 +/- 5.05 h. Scanning electron microscopy revealed that B4G12 cells had a smooth cell surface, while H9C1 cells had numerous thin filopodia. Both cell lines expressed ZO-1 and occludin adequately, and little but well detectable amounts of connexin-43. Expression of HCEC-specific 9.3.E-antigen was found commensurately in both cell lines, while expression of Na,K-ATPase alpha1 was higher in H9C1 cells than in B4G12 cells. B4G12 cells expressed collagen IV abundantly and almost no collagen III, while H9C1 cells expressed both collagens at reasonable amounts. It is concluded that the clonal cell line B4G12 represents an ideal model of differentiated HCEC, while H9C1 may reflect features of developing or transitional HCEC.
Collapse
Affiliation(s)
- Monika Valtink
- Tissue Engineering Laboratories, Biotechnology Center, University of Technology, Dresden, Germany.
| | | | | | | |
Collapse
|
32
|
Edelhauser HF, Sanders DR, Azar R, Lamielle H. Corneal endothelial assessment after ICL implantation. J Cataract Refract Surg 2004; 30:576-83. [PMID: 15050252 DOI: 10.1016/j.jcrs.2003.09.047] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2003] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the 3- to 4-year effects of the Implantable Contact Lens (ICL) on the corneal endothelium. SETTING Multicenter study. METHODS Noncontact specular microscopy was performed as a subgroup study in a Phase III U.S. Food and Drug Administration clinical trial. Endothelial cell images were collected in the central region of the cornea before surgery and 3, 12, 24, and 36 months after surgery, with a few at 48 months. The images were recorded and analyzed later by a central reading center. The cell density, coefficient of variation, and percentage of hexagonal cells were determined. RESULTS The cumulative endothelial cell loss was between 8.4% and 8.9% over the first 3 years and between 8.4% and 9.5% over the first 4 years depending on the method of calculation. The cell loss between baseline and 3 months was 2.1%; 3 months and 1 year, 0.9%; 1 year and 2 years, 2.3%; 2 years and 3 years, 3.2%; and 3 years and 4 years, -0.1%. The coefficient of variation decreased over the course of the study, and the proportion of cases with hexagonal cells increased slightly. CONCLUSIONS The cell loss between 1 year and 3 years in the absence of an increase in the coefficient of variation and/or a decrease in the percentage of hexagonal cells is most readily explained by prolonged corneal remodeling following the surgical procedure rather than ongoing cell loss. The cell loss observed between 3 years and 4 years (0.1% gain) was negligible. Regardless of the cause of the change in endothelial cell density over the first 3 years, the available 4-year data suggest there was no ongoing chronic loss.
Collapse
|
33
|
Abstract
BACKGROUND The human corneal endothelium has a limited proliferative capacity in vivo. Until now it has only been possible to replace damaged endothelium by transplantation of a donor cornea. After establishing methods for the isolation and in vitro cultivation of human corneal endothelial cells (HCEC), transplantation of these cells may be an alternative therapeutic option. MATERIALS AND METHODS In this review methods for the in vitro cultivation of HCEC and their transplantation onto the Descemet membrane of donor corneas are described. RESULTS In vitro proliferation of human adult corneal endothelial cells was achieved by the development of defined cell culture conditions, including supplementation of culture medium with specified growth factors. Dependent on the culture conditions, in vitro cultured endothelial cells showed phenotypic changes and different proliferative behaviour. The propagation of corneal endothelial cells in vitro offered the possibility of their transplantation onto donor corneas in an in vitro model. After transplantation, these cells formed a monolayer whose morphology and cell density depended on the differentiation status of the cells in vitro. Highest cell numbers up to 3000 cells/mm2 were achieved using a SV40-transformed HCEC-cell line. Monolayer integrity could be demonstrated by positive staining for integrins and light junction proteins, and pump function of the newly established endothelium was proven by perfusion studies. CONCLUSIONS Methods to transplant HCEC onto human denuded corneas have been successfully established to reconstruct human corneas. Recent developments in genetic manipulation of cells and tissue engineering will be of great help in constructing suitable corneas for keratoplasty. Thus corneal endothelial cell transplantation is one of the promising future possibilities to provide corneas of high quality for patients. Furthermore, improvement of the transplantation technique may lead to a method to directly manipulate the diseased endothelium of patients with corneal endothelial dystrophies.
Collapse
Affiliation(s)
- Katrin Engelmann
- University Eye Hospital, University Hospital Carl Gustav Carus at the TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
| | | | | |
Collapse
|
34
|
Amann J, Holley GP, Lee SB, Edelhauser HF. Increased endothelial cell density in the paracentral and peripheral regions of the human cornea. Am J Ophthalmol 2003; 135:584-90. [PMID: 12719063 DOI: 10.1016/s0002-9394(02)02237-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE To systematically investigate the central, paracentral, and peripheral endothelial cell density (ECD) in normal human corneas. DESIGN Observational case series and experimental study. METHODS Noncontact specular microscopy was undertaken to determine the ECD of the central, paracentral (2.7 +/- 0.2 mm from center) and peripheral (4.7 +/- 0.2 mm from center) regions of the cornea of 48 normal eyes. The ECDs of central and peripheral regions were also determined with contact specular microscopy in 21 normal eyes and a group of 30 Optisol-GS eye bank corneas were evaluated with alizarin red stain. Histologic ECD of 13 Optisol-GS stored corneas were also determined. RESULTS Paracentral and peripheral ECD measured with the noncontact specular microscope were 5.8% (P <.01) and 9.6% (P <.001) increased compared with central ECD. Superior peripheral ECD was increased compared with the other three peripheral quadrants (P <.05) and was 15.9% higher than central ECD. Contact specular microscopy showed an increase of 8.9% in the peripheral ECD from the center. Alizarin red stained corneas confirmed the specular microscopy numbers with a 9.2% increase in the paracentral region, and a 17.2% increase in the peripheral region. Histological cross sections of human corneas also showed a 22.9% increase in peripheral ECD compared with the central region. CONCLUSIONS The human cornea has an increased ECD in the paracentral and peripheral regions of cornea compared with the central region. The superior peripheral region of the corneal endothelium has the largest increase in ECD. These data on normal endothelial cell distribution in the human cornea are especially significant as they relate to new surgical techniques and endothelial wound repair.
Collapse
Affiliation(s)
- Josef Amann
- Emory University Eye Center, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
35
|
Thuret G, Chiquet C, Herrag S, Dumollard JM, Boudard D, Bednarz J, Campos L, Gain P. Mechanisms of staurosporine induced apoptosis in a human corneal endothelial cell line. Br J Ophthalmol 2003; 87:346-52. [PMID: 12598452 PMCID: PMC1771564 DOI: 10.1136/bjo.87.3.346] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Apoptosis very probably plays a key part in endothelial cell loss during corneal storage in organ culture as well as hypothermic storage. However, the mechanisms underlying endothelial apoptosis are poorly understood. The response of a human corneal endothelial cell (HCEC) line to staurosporine, a known inducer of apoptosis, was investigated to gain insights into the intracellular modulators that participate in endothelial cell death. METHODS Immortalised HCECs were studied after 3, 6, 12, and 24 hours of incubation with 0.2 micro M staurosporine. Cell shedding was monitored. Hoechst 33342 fluorescent DNA staining combined with propidium iodide was used for apoptosis/necrosis quantification and morphological examination. The caspase-3 active form was assessed using western blot, proteolytic activity detection, and immunocytochemistry. The cleaved form of poly(ADP-ribose) polymerase (PARP) was assessed using immunocytochemistry and western blot. The ultrastructural features of cells were screened after 12 hours with staurosporine or vehicle. RESULTS The specific apoptotic nature of staurosporine induced HCEC death was confirmed. The ultrastructural features of staurosporine treated cells were typical of apoptosis. HCEC shedding and DNA condensation increased with time. Caspase-3 activity was detected as early as 3 hours after exposure with staurosporine, peaking at 12 hours of incubation. The presence of cleaved PARP after 3 hours confirmed caspase-3 activation. CONCLUSIONS These data suggest strongly that HCEC cell death induced by staurosporine is apoptosis. The main consequence of HCEC apoptosis is shedding. Staurosporine induced apoptosis of endothelial cells involves activation of caspase-3, and could be a useful model to study strategies of cell death inhibition.
Collapse
Affiliation(s)
- G Thuret
- Cell death and neoplasia laboratory, EA 3063, University of Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Arash J Ahmadi
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, 02114, USA
| | | |
Collapse
|
37
|
Talbot NC, Caperna TJ, Edwards JL, Garrett W, Wells KD, Ealy AD. Bovine blastocyst-derived trophectoderm and endoderm cell cultures: interferon tau and transferrin expression as respective in vitro markers. Biol Reprod 2000; 62:235-47. [PMID: 10642558 DOI: 10.1095/biolreprod62.2.235] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Continuous cultures of bovine trophectoderm (CT-1 and CT-5) and bovine endoderm (CE-1 and CE-2) were initiated and maintained on STO feeder cells. CT-1 and CT-5 were derived from the culture of intact, 10- to 11-day in vitro-produced blastocysts. CE-1 and CE-2 were derived from the culture of immunodissected inner cell masses of 7- to 8-day in vitro-produced blastocysts. The cultures were routinely passaged by physical dissociation. Although morphologically distinct, the trophectoderm and endoderm both grew as cell sheets of polarized epithelium (dome formations) composed of approximately cuboidal cells. Both cell types, particularly the endoderm, grew on top of the feeder cells for the most part. Trophectoderm cultures grew faster, relative to endoderm, in large, rapidly extending colonies of initially flat cells with little or no visible lipid. The endoderm, in contrast, grew more slowly as tightly knit colonies with numerous lipid vacuoles in the cells at the colony centers. Ultrastructure analysis revealed that both cell types were connected by desmosomes and tight junctional areas, although these were more extensive in the trophectoderm. Endoderm was particularly rich in rough endoplasmic reticulum and Golgi apparatus indicative of cells engaged in high protein production and secretion. Interferon tau expression was specific to trophectoderm cultures, as demonstrated by reverse transcription-polymerase chain reaction, Western blot, and antiviral activity; and this property may act as a marker for this cell type. Serum protein production specific to endoderm cultures was demonstrated by Western blot; this attribute may be a useful marker for this cell type. This simple coculture method for the in vitro propagation of bovine trophectoderm and endoderm provides a system for assessing their biology in vitro.
Collapse
Affiliation(s)
- N C Talbot
- USDA, ARS, LPSI, Gene Evaluation and Mapping Laboratory, and Growth Biology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | |
Collapse
|