1
|
Clever Experimental Designs: Shortcuts for Better iPSC Differentiation. Cells 2021; 10:cells10123540. [PMID: 34944048 PMCID: PMC8700474 DOI: 10.3390/cells10123540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/18/2022] Open
Abstract
For practical use of pluripotent stem cells (PSCs) for disease modelling, drug screening, and regenerative medicine, the cell differentiation process needs to be properly refined to generate end products with consistent and high quality. To construct and optimize a robust cell-induction process, a myriad of cell culture conditions should be considered. In contrast to inefficient brute-force screening, statistical design of experiments (DOE) approaches, such as factorial design, orthogonal array design, response surface methodology (RSM), definitive screening design (DSD), and mixture design, enable efficient and strategic screening of conditions in smaller experimental runs through multifactorial screening and/or quantitative modeling. Although DOE has become routinely utilized in the bioengineering and pharmaceutical fields, the imminent need of more detailed cell-lineage specification, complex organoid construction, and a stable supply of qualified cell-derived material requires expedition of DOE utilization in stem cell bioprocessing. This review summarizes DOE-based cell culture optimizations of PSCs, mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), and Chinese hamster ovary (CHO) cells, which guide effective research and development of PSC-derived materials for academic and industrial applications.
Collapse
|
2
|
Mahameed M, Obiedat A, Beck G, Johnson JC, Tirosh B. Low concentrations of cadmium chloride promotes protein translation and improve cell line productivity. Biotechnol Bioeng 2019; 116:569-580. [DOI: 10.1002/bit.26888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mohamed Mahameed
- Institute for Drug ResearchThe School of PharmacyThe Hebrew University of JerusalemJerusalem Israel
| | - Akram Obiedat
- Institute for Drug ResearchThe School of PharmacyThe Hebrew University of JerusalemJerusalem Israel
| | - Gad Beck
- Molecular Biology and Fermentation Unit, Valin TechnologiesYavne Israel
| | | | - Boaz Tirosh
- Institute for Drug ResearchThe School of PharmacyThe Hebrew University of JerusalemJerusalem Israel
| |
Collapse
|
3
|
Biaggio RT, Abreu-Neto MS, Covas DT, Swiech K. Serum-free suspension culturing of human cells: adaptation, growth, and cryopreservation. Bioprocess Biosyst Eng 2015; 38:1495-507. [DOI: 10.1007/s00449-015-1392-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
|
4
|
Serum-free medium optimization based on trial design and support vector regression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:269305. [PMID: 25379507 PMCID: PMC4212526 DOI: 10.1155/2014/269305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/26/2014] [Accepted: 07/27/2014] [Indexed: 11/22/2022]
Abstract
The Plackett-Burman design and support vector machine (SVM) were reported to be used on many fields such as some feature selections, protein structure prediction, or forecasting of other situations. Here, with suspension adapted Chinese hamster ovary (CHO) cells as the object of study, a serum-free medium for the culture of CHO cells in suspension was optimized by this method. Support vector machine based on genetic algorithm was used to predict the growth rate of CHO and prove the results from the trial designs. Experimental results indicated that ZnSO4, transferrin, and bovine serum albumin (BSA) were important ones. The same conclusion was arrived at when the support vector regression model analyzed the experimental results. With the methods mentioned, the influence of 7 medium supplements on the growth of CHO cells in suspension was evaluated efficiently.
Collapse
|
5
|
Cho MJ, Wu E, Kwan J, Yu M, Banh J, Linn W, Anand A, Li Z, TeRonde S, Register JC, Jones TJ, Zhao ZY. Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. PLANT CELL REPORTS 2014; 33:1767-77. [PMID: 25063322 DOI: 10.1007/s00299-014-1656-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/04/2014] [Indexed: 05/23/2023]
Abstract
An improved Agrobacterium -mediated transformation protocol is described for a recalcitrant commercial maize elite inbred with optimized media modifications and AGL1. These improvements can be applied to other commercial inbreds. This study describes a significantly improved Agrobacterium-mediated transformation protocol in a recalcitrant commercial maize elite inbred, PHR03, using optimal co-cultivation, resting and selection media. The use of green regenerative tissue medium components, high copper and 6-benzylaminopurine, in resting and selection media dramatically increased the transformation frequency. The use of glucose in resting medium further increased transformation frequency by improving the tissue induction rate, tissue survival and tissue proliferation from immature embryos. Consequently, an optimal combination of glucose, copper and cytokinin in the co-cultivation, resting and selection media resulted in significant improvement from 2.6 % up to tenfold at the T0 plant level using Agrobacterium strain LBA4404 in transformation of PHR03. Furthermore, we evaluated four different Agrobacterium strains, LBA4404, AGL1, EHA105, and GV3101 for transformation frequency and event quality. AGL1 had the highest transformation frequency with up to 57.1 % at the T0 plant level. However, AGL1 resulted in lower quality events (defined as single copy for transgenes without Agrobacterium T-DNA backbone) when compared to LBA4404 (30.1 vs 25.6 %). We propose that these improvements can be applied to other recalcitrant commercial maize inbreds.
Collapse
Affiliation(s)
- Myeong-Je Cho
- DuPont Agricultural Biotechnology, DuPont-Pioneer, 4010 Point Eden Way, Hayward, CA, 94545, USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gottipamula S, Muttigi MS, Kolkundkar U, Seetharam RN. Serum-free media for the production of human mesenchymal stromal cells: a review. Cell Prolif 2013; 46:608-27. [PMID: 24118248 DOI: 10.1111/cpr.12063] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/24/2013] [Indexed: 12/29/2022] Open
Abstract
The regenerative potential of mesenchymal stromal cells (MSC) holds great promise in using them for treatment of a wide range of debilitating diseases. Several types of culture media and systems have been used for large-scale expansion of MSCs in vitro; however, the majority of them rely heavily on using foetal bovine serum (FBS)-supplement for optimal cell proliferation. FBS-based cultures pose the potential threat of spread of transmissible spongiform encephalopathy and bovine spongiform encephalopathy to MSCs and then to their recipients. A recent trend in cell culture is to change from serum-use to serum-free media (SFM). In this context, the current review focuses specifically on employment of various SFM for MSCs and discusses existences of various options with which to substitute FBS. In addition, we analyse MSC population growth kinetic patterns using various SFM for large-scale production of MSCs.
Collapse
Affiliation(s)
- S Gottipamula
- Stempeutics Research Pvt. Ltd, Shirdi Sai Baba Cancer Hospital, Manipal, 576104, India
| | | | | | | |
Collapse
|
7
|
Chua GK, Abdul-Rahman B, Chisti Y. Production and scale-up of a monoclonal antibody against 17-hydroxyprogesterone. Biotechnol Prog 2012; 29:154-64. [PMID: 23125182 DOI: 10.1002/btpr.1656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/21/2012] [Indexed: 12/17/2022]
Abstract
The hybridoma 192 was used to produce a monoclonal antibody (MAb) against 17-hydroxyprogesterone (17-OHP), for possible use in screening for congenital adrenal hyperplasia (CAH). The factors influencing the MAb production were screened and optimized in a 2 L stirred bioreactor. The production was then scaled up to a 20 L bioreactor. All of the screened factors (aeration rate, stirring speed, dissolved oxygen concentration, pH, and temperature) were found to significantly affect production. Optimization using the response surface methodology identified the following optimal production conditions: 36.8°C, pH 7.4, stirring speed of 100 rpm, 30% dissolved oxygen concentration, and an aeration rate of 0.09 vvm. Under these conditions, the maximum viable cell density achieved was 1.34 ± 0.21 × 10(6) cells mL(-1) and the specific growth rate was 0.036 ± 0.004 h(-1) . The maximum MAb titer was 11.94 ± 4.81 μg mL(-1) with an average specific MAb production rate of 0.273 ± 0.135 pg cell(-1) h(-1) . A constant impeller tip speed criterion was used for the scale-up. The specific growth rate (0.040 h(-1) ) and the maximum viable cell density (1.89 × 10(6) cells mL(-1) ) at the larger scale were better than the values achieved at the small scale, but the MAb titer in the 20 L bioreactor was 18% lower than in the smaller bioreactor. A change in the culture environment from the static conditions of a T-flask to the stirred bioreactor culture did not affect the specificity of the MAb toward its antigen (17-OHP) and did not compromise the structural integrity of the MAb.
Collapse
Affiliation(s)
- Gek Kee Chua
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Malaysia.
| | | | | |
Collapse
|
8
|
Jordan M, Voisard D, Berthoud A, Tercier L, Kleuser B, Baer G, Broly H. Cell culture medium improvement by rigorous shuffling of components using media blending. Cytotechnology 2012; 65:31-40. [PMID: 22695856 DOI: 10.1007/s10616-012-9462-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 05/05/2012] [Indexed: 12/01/2022] Open
Abstract
A novel high-throughput methodology for the simultaneous optimization of many cell culture media components is presented. The method is based on the media blending approach which has several advantages as it works with ready-to-use media. In particular it allows precise pH and osmolarity adjustments and eliminates the need of concentrated stock solutions, a frequent source of serious solubility issues. In addition, media blending easily generates a large number of new compositions providing a remarkable screening tool. However, media blending designs usually do not provide information on distinct factors or components that are causing the desired improvements. This paper addresses this last point by considering the concentration of individual medium components to fix the experimental design and for the interpretation of the results. The extended blending strategy was used to reshuffle the 20 amino acids in one round of experiments. A small set of 10 media was specifically designed to generate a large number of mixtures. 192 mixtures were then prepared by media blending and tested on a recombinant CHO cell line expressing a monoclonal antibody. A wide range of performances (titers and viable cell density) was achieved from the different mixtures with top titers significantly above our previous results seen with this cell line. In addition, information about major effects of key amino acids on cell densities and titers could be extracted from the experimental results. This demonstrates that the extended blending approach is a powerful experimental tool which allows systematic and simultaneous reshuffling of multiple medium components.
Collapse
Affiliation(s)
- Martin Jordan
- Biotech Process Sciences, Merck Serono Biotech Center, 1809, Fenil-sur-Corsier, Switzerland,
| | | | | | | | | | | | | |
Collapse
|
9
|
Schröder M, Matischak K, Friedl P. Serum- and protein-free media formulations for the Chinese hamster ovary cell line DUKXB11. J Biotechnol 2004; 108:279-92. [PMID: 15006429 DOI: 10.1016/j.jbiotec.2003.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 12/01/2003] [Accepted: 12/08/2003] [Indexed: 11/25/2022]
Abstract
The production of therapeutic proteins in mammalian cell lines is of outstanding importance. The maintenance of most mammalian cell lines in culture requires the addition of serum to the culture medium. The elimination of serum from mammalian cell culture is desirable since serum is expensive and a source of contaminants, e.g. viruses, mycoplasma or prions. Here we describe the composition of serum- and protein-free media for the Chinese hamster ovary (CHO) cell line DUKXB11. The serum-free formulation supports excellent growth of CHO DUKXB11 cells at low (23cells/cm2) and high (2 x 10(4) cells/cm2) seeding densities characterized by a generation time of 10-12h, and, after addition of 0.2% pluronic F-68, the growth of a recombinant suspension cell line derived from DUKXB11. In addition, this formulation also allowed us to adapt recombinant cell lines expressing various amounts of human antithrombin ATIII (ATIII) to serum-free conditions. Secretion of ATIII was readily observed in the serum-free medium. Minor changes to the serum-free formulation resulted in a protein free formulation that supported growth of CHO DUKXB11 cells, growth of recombinant CHO cells expressing ATIII, and production of ATIII.
Collapse
Affiliation(s)
- Martin Schröder
- Institut für Biochemie, Technische Universität Darmstadt, Petersenstr. 22, D-64287 Darmstadt, Germany.
| | | | | |
Collapse
|
10
|
Thomas PB, Risinger KE, Klinge CM. Identification of estrogen receptor beta expression in Chinese hamster ovary (CHO) cells and comparison of estrogen-responsive gene transcription in cells adapted to serum-free media. J Steroid Biochem Mol Biol 2003; 86:41-55. [PMID: 12943744 DOI: 10.1016/s0960-0760(03)00250-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Most cultured cell lines require addition of serum to the medium to maintain their proliferative capacity. For studies examining the cellular effects of estrogens serum is charcoal-stripped to remove steroids. Nonetheless, addition of the selective estrogen receptor modulator (SERM) 4-hydroxytamoxifen (4-OHT) inhibits the basal transcriptional activity of estrogen receptors alpha or beta (ERalpha or ERbeta) in transfected cells. We tested the hypothesis that elimination of serum from the culture medium will block 4-OHT's repression of basal activity. Chinese hamster ovary (CHO-K1) cells adapted to serum-free medium exhibited estrogen responsiveness that was identical with that of the cells grown in serum-containing media. 4-OHT-suppressed basal transcription of an estrogen response element (ERE)-reporter in ERalpha-transfected cells even in the absence of serum, indicating that the 4-OHT suppressive activity is not mediated by blocking ER interaction with serum estrogens. We speculate that 4-OHT-ER recruits co-repressors to suppress basal transcription. We discovered that CHO-K1 cells express ERalpha and ERbeta mRNA. However only ERbeta protein was expressed and use of ERbeta-selective 2,3-bis(4-hydroxy-phenyl)propionitrile (DPN) and ERalpha-selective 4-propyl-1,3,5-tris(4-hydroxy-phenyl)pyrazole) (PPT) revealed that only ERbeta was transcriptionally active. In conclusion, growing CHO-K1 in serum-free medium does not impact the estrogen responsiveness and this cell line expresses functional ERbeta.
Collapse
MESH Headings
- Animals
- CHO Cells/cytology
- CHO Cells/drug effects
- CHO Cells/metabolism
- Cricetinae
- Culture Media, Serum-Free
- Estradiol/analogs & derivatives
- Estradiol/metabolism
- Estradiol/pharmacology
- Estrogen Receptor Modulators/pharmacology
- Estrogen Receptor alpha
- Estrogen Receptor beta
- Ethanol/pharmacology
- Fulvestrant
- Gene Expression Regulation/drug effects
- Genes, Reporter
- Luciferases/genetics
- Nitriles/chemistry
- Nitriles/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Estrogen/agonists
- Receptors, Estrogen/biosynthesis
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Response Elements/drug effects
- Response Elements/genetics
- Tamoxifen/analogs & derivatives
- Tamoxifen/antagonists & inhibitors
- Tamoxifen/pharmacology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Padmaja B Thomas
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | |
Collapse
|
11
|
Jochems CEA, van der Valk JBF, Stafleu FR, Baumans V. The use of fetal bovine serum: ethical or scientific problem? Altern Lab Anim 2002; 30:219-27. [PMID: 11971757 DOI: 10.1177/026119290203000208] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fetal bovine serum (FBS) is a common component of animal cell culture media. It is harvested from bovine fetuses taken from pregnant cows during slaughter. FBS is commonly harvested by means of a cardiac puncture without any form of anaesthesia. Fetuses are probably exposed to pain and/or discomfort, so the current practice of fetal blood harvesting is inhumane. Apart from moral concerns, several scientific and technical problems exist with regard to the use of FBS in cell culture. Efforts should be made to reduce the use of FBS or, preferably, to replace it with synthetic alternatives.
Collapse
Affiliation(s)
- Carlo E A Jochems
- Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80166, 3508 TD Utrecht, The Netherlands
| | | | | | | |
Collapse
|