1
|
Wang CH, Tseng CY, Hsu WL, Tzen JTC. Nuezhenide of the fruits of Nuzhenzi (Ligustrum lucidum Ait.) is a functional analog of ghrelin. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119108. [PMID: 39566863 DOI: 10.1016/j.jep.2024.119108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried fruit of Ligustrum lucidum Ait. (FLL), known as Nuzhenzi, is traditionally recognized for its anti-aging properties in Chinese medicine. Nuezhenide, a water-soluble secoiridoid present in FLL, has demonstrated various pharmacological activities including neuroprotection, enhancement of learning and memory, antiosteoporotic, and antiviral activities. These therapeutic benefits align with the anti-aging effects attributed to ghrelin, particularly in the modulation of growth hormone secretagogue receptor type 1a (GHSR-1a) signaling. AIM OF THE WORK This study aimed to investigate the potential of FLL extracts, particularly its major compound nuezhenide, as agonists of GHSR-1a, a receptor implicated in anti-aging mechanisms, utilizing a stable GHSR-1a-expressing cell line. MATERIALS AND METHODS HEK293T cells expressing GHSR-1a-mCherry were used to assess the effects of FLL extract and its major compound, nuezhenide, on cell viability and ERK1/2 signaling. Molecular docking simulations predicted the interaction between nuezhenide and the GHSR-1a binding pocket. The impact of nuezhenide on ERK1/2 phosphorylation was evaluated, along with the involvement of phospholipase C and calcium signaling in this process. RESULTS Molecular docking simulations indicated that nuezhenide could interact with the GHSR-1a receptor, similar to teaghrelin, another known ghrelin analog. Experimental data showed that FLL extracts and nuezhenide enhanced cell viability and ERK1/2 activation in GHSR1a-mCherry HEK293T cells. The effect was specifically mediated by GHSR-1a, as confirmed by SP-analog treatment. Further analysis revealed that nuezhenide-induced ERK1/2 activation is likely mediated through a phospholipase C-dependent pathway involving intracellular calcium release. CONCLUSION This study demonstrated for the first time that nuezhenide acts as a putative GHSR-1a agonist, promoting cell proliferation and activating ERK1/2 signaling via phospholipase C and calcium pathways. These findings support the traditional use of FLL as an anti-aging herbal remedy and suggest that nuezhenide could be developed as a therapeutic agent targeting GHSR-1a-mediated pathways.
Collapse
Affiliation(s)
- Chia-Hao Wang
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Ching-Yu Tseng
- Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung, 402, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung, 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
2
|
Gui J, Azad MAK, Lin W, Meng C, Hu X, Cui Y, Lan W, He J, Kong X. Chinese herb ultrafine powder supplementation improves egg nutritional value and quality in laying hens. Vet Q 2024; 44:1-17. [PMID: 38557401 PMCID: PMC10986442 DOI: 10.1080/01652176.2024.2331530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
This study evaluates the effects of dietary Chinese herb ultrafine powder (CHUP) supplementation in late-phase laying hens on the quality and nutritional values of eggs. A total of 576 Xinyang black-feather laying hens (300-day-old) were randomly allocated into eight groups for a 120-day feeding trial. Each group contained eight replicates with nine hens per replicate. The experimental groups included the control (basal diet) and different levels of CHUP groups (details in 'Materials and methods'). The results showed that the eggshell strength was increased (p < 0.05) in the L, LF, L-LF, L-T, and LF-T groups on day 60 of the trial. In addition, the plasma estradiol level in the L-LF, LF-T, and L-LF-T groups and unsaturated fatty acids concentrations in egg yolk of the CHUP groups (except LF-T group) were increased, whereas total cholesterol (T, L-LF, L-T, and L-LF-T groups) in egg yolk and the atherogenicity (T, L-T, and L-LF-T groups) and thrombogenicity (T, L-LF, L-T, and L-LF-T groups) indexes were decreased (p < 0.05) on day 60 of the trial compared with the control group. Moreover, bitter amino acids in egg albumen were decreased (p < 0.05) in the L-LF group on day 60 and the L-LF-T group on day 120 of the trial. Collectively, these findings indicate that dietary CHUP supplementation could improve eggshell quality and increase plasma reproductive hormone, fatty acid and amino acid composition, and nutritional values of eggs, especially L-LF and L-LF-T.
Collapse
Affiliation(s)
- Jue Gui
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenchao Lin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Chengwen Meng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Hu
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| |
Collapse
|
3
|
Zhuang W, Sun N, Gu C, Liu S, Zheng Y, Wang H, Tong X, Song J. A literature review on Epimedium, a medicinal plant with promising slow aging properties. Heliyon 2023; 9:e21226. [PMID: 38027566 PMCID: PMC10665689 DOI: 10.1016/j.heliyon.2023.e21226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Ethnopharmacological relevance Aging is related to many factors, such as genes, oxidative damage, metabolic abnormalities, immune regulation and sex hormones. This article reviews the pharmacological mechanism of Epimedium on slow aging from six aspects: gene regulation, antioxidant, the regulation of metabolism, the modulation of the immune system, the regulation of sex hormone, and clinical efficacy.Aim of the studyThrough literature review, to discover the potential pharmacological mechanism of Epimedium for slow aging. Materials and methods We reviewed the literature on the applications of Epimedium in multiple systems and the potential underlying mechanisms with systematic and comprehensive illustrations. The review includes the following aspects: gene regulation, antioxidant, the regulation of metabolism, the modulation of the immune system, the regulation of sex hormone, clinical efficacy and safety. Results The slow aging active components of Epimedium may be flavonoids, such as Epimedins A, B, C and icariin The slow aging effect of Epimedium may be related to gene regulation, antioxidant, the regulation of metabolism, the modulation of the immune system, and the regulation of sex hormone. No severe adverse reaction has been reported. Conclusions Epimedium has potential slow aging effect and been widely used in the clinic for aging-related diseases in the real world in China; however, large-scale studies are still needed.
Collapse
Affiliation(s)
- Wei Zhuang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Gerontic Disease Clinical Research Center, Beijing 100053, China
| | - Nan Sun
- Department of Pharmacy, Beijing Mentougou District Hospital,Beijing, China
| | - Chengjuan Gu
- Department of Endocrinology, Shenzhen Hospital of Guangzhou University of Chinese Medicine(Futian),Shenzhen, China
| | - Shimeng Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yujiao Zheng
- Graduate School, Beijing University of Chinese Medicine, China, Beijing, China
| | - Han Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | - Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Li X, Jia J, Li T, Zhao Z, Ren C, Liu H, Pei J. Simultaneous determination and quality evaluation of 16 compounds in Ligustri Lucidi Fructus covering different regions and processed products using ultra-high-performance liquid chromatography-mass spectrometry. Biomed Chromatogr 2023; 37:e5564. [PMID: 36509695 DOI: 10.1002/bmc.5564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
A quantitative analysis method and a chemical pattern recognition method were developed to evaluate raw Ligustri Lucidi Fructus (LLF) from different regions and different processed products. In this study, a comprehensive strategy using ultra-high-performance liquid chromatography-mass spectrometry quantitative analysis method was established for the simultaneous determination of 16 components in 47 batches of LLF covering 19 regions belonging to 8 provinces and 24 batches of different processed products (steamed LLF without auxiliary material, wine-steamed LLF, salt-steamed LLF, and vinegar-steamed LLF). The results of this study indicated that the proposed method was reliable and accurate for the rapid analysis proved by detection limit, quantification limit, precision, and accuracy. Furthermore, principal component analysis and hierarchical cluster analysis were employed to analyze the experimental data, showing that the best-quality samples of 47 batches of raw LLF were S47 (Lantian, Shaanxi), S39 (Pingyang-2, Shandong), S38 (Pingyang-1, Shandong), and S45 (Lingbao, Henan), whereas the worst-quality samples were S7-S16 (Huzhou, Zhejiang). In 24 batches of processed products, the best-quality samples were S48 (salt steamed 2 h), S60 (wine steamed 2 h), and S61 (wine steamed 4 h). Meanwhile, the heat map showed that the contents of triterpenoid saponins, including C16 (ursolic acid), C15 (oleanic acid), and C14 (maslinic acid), were higher than those of other compounds in 71 batches of samples. These results suggested that the quality of raw LLF in the central and northern regions was better than that in the southern regions, and regarding the processed products, different auxiliary materials had little effect on the quality of LLF, but steaming time of 2 h was appropriate. Briefly, this study proposed a multiparameter quantitative analysis method for the overall quality control of raw LLF samples covering different regions in China and different processed LLF.
Collapse
Affiliation(s)
- Xiaoan Li
- Department of Resources and Identification of Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, P. R. China.,Ankang Inspection and Testing Center for Food and Drug, Ankang, P. R. China
| | - Jianzhong Jia
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, Xi'an, P. R. China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, Xi'an, P. R. China
| | - Zefeng Zhao
- Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Chaoxiang Ren
- Department of Resources and Identification of Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, P. R. China
| | - Haijing Liu
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, Xi'an, P. R. China
| | - Jin Pei
- Department of Resources and Identification of Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, P. R. China
| |
Collapse
|
5
|
Wang J, Cao Y, Feng X, Li T, Bi Y, Zhang T, Xu H, Yu G, Zhang C, Sun Y. Study on the synergistic and attenuating mechanism of the combination of
Epimedium
and
Ligustri lucidi fructus
based on pharmacokinetics. J Sep Sci 2022; 45:3382-3392. [DOI: 10.1002/jssc.202200336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jiaqi Wang
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Yijia Cao
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
- Blood Research Laboratory Chengdu Blood Center Chengdu Sichuan 610020 China
| | - Xin Feng
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Tianyi Li
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Yuelin Bi
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Tonghua Zhang
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Haoran Xu
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Gengyuan Yu
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| | - Chenning Zhang
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
- Department of Pharmacy Xiangyang No. 1 People's Hospital, Hubei University of Medicine Xiangyang China
| | - Yikun Sun
- School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China
| |
Collapse
|
6
|
Chen C, Ai Q, Wei Y. Hydroxytyrosol protects against cisplatin-induced nephrotoxicity via attenuating CKLF1 mediated inflammation, and inhibiting oxidative stress and apoptosis. Int Immunopharmacol 2021; 96:107805. [PMID: 34162164 DOI: 10.1016/j.intimp.2021.107805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
Cisplatin (CDDP) is widely used as a broad-spectrum anticancer chemotherapeutic drug, often giving rise to nephrotoxicity due to the enhancement of inflammation, oxidative stress, and apoptosis. Hydroxytyrosol (HT), a representative and effective polyphenol component of Fructus Ligustri lucidi, has been known to have anti-inflammatory and anti-oxidative effects. Chemokine-like factor 1 (CKLF1) is a novel chemokine participates in inflammation and related to various inflammatory diseases. The present study is to investigate the protective effects and mechanism of HT on CDDP injured HK-2 cells and kidneys of mice. HT protected HK-2 cells against CDDP toxicity, and improved CDDP-induced histopathalogical damage and renal dysfunction in mice. HT suppressed the increased expression of CKLF1 and NF-κB activation caused by CDDP, attenuating followed inflammatory response manifested by declined levels of TNF-α and IL-1β. The protective effects of HT against CDDP-induced injury were partly reversed on CKLF1 overexpressed HK-2 cells, which shown by decreased cell viability and increased activation of NF-κB. HT also up-regulated the activities of GSH and SOD decreased by CDDP, and inhibited the increased production of MDA and NO induced by CDDP. Moreover, HT also inhibited CDDP-induced apoptosis in kidneys of mice. Our results demonstrated that HT protected CDDP-induced renal injury through inhibiting CKLF1 mediated inflammatory pathway, and also by anti-oxidative stress and anti-apoptosis. HT may be an effective therapeutic agent in CDDP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Qidi Ai
- Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Yuhui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Li L, Chen B, Zhu R, Li R, Tian Y, Liu C, Jia Q, Wang L, Tang J, Zhao D, Mo F, Liu Y, Li Y, Orekhov AN, Brömme D, Zhang D, Gao S. Fructus Ligustri Lucidi preserves bone quality through the regulation of gut microbiota diversity, oxidative stress, TMAO and Sirt6 levels in aging mice. Aging (Albany NY) 2019; 11:9348-9368. [PMID: 31715585 PMCID: PMC6874471 DOI: 10.18632/aging.102376] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
Gut dysbiosis and oxidative stress may trigger senile osteoporosis. Fructus Ligustri Lucidi (FLL) has bone-preserving properties and affects the intestinal microecology. However, the mechanism of the anti-osteoporotic effect of FLL and its link to the gut microbiota remains to be elucidated. Here, we demonstrated that sustained exposure of ICR mice to D-galactose / sodium nitrite for 90 days causes aging-related osteoporosis and reduced cognitive performance. The aging phenotype is also characterized by increased oxidative stress in serum. This is likely triggered by abnormal changes in the gut microbiota population of Bifidobacterium and the ratio of Firmicutes/ Bacteroidetes that resulted in increased levels of flavin-containing monooxygenase-3 and trimethylamine-N-oxide (TMAO). Moreover, the increased oxidative stress further accelerated aging by increasing tumor necrosis factor-α levels in serum and reducing Sirtuin 6 (Sirt6) expression in long bones, which prompted nuclear factor kappa-B acetylation as well as over-expression and activation of cathepsin K. FLL-treated aging mice revealed a non-osteoporotic bone phenotype and an improvement on the cognitive function. The mechanism underlying these effects may be linked to the regulation of gut microbiota diversity, antioxidant activity, and the levels of TMAO and Sirt6. FLL may represent a potential source for identifying anti-senile osteoporotic drug candidates.
Collapse
Affiliation(s)
- Lin Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Beibei Chen
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruyuan Zhu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rui Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yimiao Tian
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chenyue Liu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiangqiang Jia
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinfa Tang
- The First Affiliated Hospital of He'nan University of Traditional Chinese Medicine, Zhengzhou 45000, China
| | - Dandan Zhao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangfang Mo
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Liu
- The Scientific Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Li
- Department of Histology, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow 125315, Russia
| | - Dieter Brömme
- Faculty of Dentistry, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Dongwei Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
8
|
Chen B, Wang L, Li L, Zhu R, Liu H, Liu C, Ma R, Jia Q, Zhao D, Niu J, Fu M, Gao S, Zhang D. Fructus Ligustri Lucidi in Osteoporosis: A Review of its Pharmacology, Phytochemistry, Pharmacokinetics and Safety. Molecules 2017; 22:molecules22091469. [PMID: 28872612 PMCID: PMC6151717 DOI: 10.3390/molecules22091469] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Fructus Ligustri Lucidi (FLL) has now attracted increasing attention as an alternative medicine in the prevention and treatment of osteoporosis. This study aimed to provide a general review of traditional interpretation of the actions of FLL in osteoporosis, main phytochemical constituents, pharmacokinetics, pharmacology in bone improving effect, and safety. Materials and Methods: Several databases, including PubMed, China National Knowledge Infrastructure, National Science and Technology Library, China Science and Technology Journal Database, and Web of Science were consulted to locate publications pertaining to FLL. The initial inquiry was conducted for the presence of the following keywords combinations in the abstracts: Fructus Ligustri Lucidi, osteoporosis, phytochemistry, pharmacokinetics, pharmacology, osteoblasts, osteoclasts, salidroside. About 150 research papers and reviews were consulted. Results: FLL is assumed to exhibit anti-osteoporotic effects by improving liver and kidney deficiencies and reducing lower back soreness in Traditional Chinese Medicine (TCM). The data from animal and cell experiments demonstrate that FLL is able to improve bone metabolism and bone quality in ovariectomized, growing, aged and diabetic rats through the regulation of PTH/FGF-23/1,25-(OH)2D3/CaSR, Nox4/ROS/NF-κB, and OPG/RANKL/cathepsin K signaling pathways. More than 100 individual compounds have been isolated from this plant. Oleanolic acid, ursolic acid, salidroside, and nuzhenide have been reported to exhibit the anti-osteoporosis effect. The pharmacokinetics data reveals that salidroside is one of the active constituents, and that tyrosol is hard to detect under physiological conditions. Acute and subacute toxicity studies show that FLL is well tolerated and presents no safety concerns. Conclusions: FLL provides a new option for the prevention and treatment of osteoporosis, which attracts rising interests in identifying potential anti-osteoporotic compounds and fractions from this plant. Further scientific evidences are expected from well-designed clinical trials on its bone protective effects and safety.
Collapse
Affiliation(s)
- Beibei Chen
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lili Wang
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100029, China.
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lin Li
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ruyuan Zhu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Haixia Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chenyue Liu
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Rufeng Ma
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Qiangqiang Jia
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Dandan Zhao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jianzhao Niu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Min Fu
- The Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada.
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Erzhi Pill® Repairs Experimental Liver Injury via TSC/mTOR Signaling Pathway Inhibiting Excessive Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28638431 PMCID: PMC5468563 DOI: 10.1155/2017/5653643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study aimed to investigate the mechanism of hepatoprotective effect of Erzhi Pill (EZP) on the liver injury via observing TSC/mTOR signaling pathway activation. The experimental liver injury was induced by 2-acetylaminofluorene (2-AAF) treatment combined with partial hepatectomy (PH). EZP treated 2-AAF/PH-induced liver injury by the therapeutic and prophylactic administration. After the administration of EZP, the activities of aspartic transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AKP), and gamma-glutamyl transpeptidase (γ-GT) were decreased, followed by the decreased levels of hepatocyte apoptosis and caspase-3 expression. However, the secretion of albumin, liver weight, and index of liver weight were elevated. Microscopic examination showed that EZP restored pathological liver injury. Meanwhile, Rheb and mammalian target of rapamycin (mTOR) activation were suppressed, and tuberous sclerosis complex (TSC) expression was elevated in liver tissues induced by 2-AAF/PHx and accompanied with lower-expression of Bax, Notch1, p70S6K, and 4E-EIF and upregulated levels of Bcl-2 and Cyclin D. Hepatoprotective effect of EZP was possibly realized via inhibiting TSC/mTOR signaling pathway to suppress excessive apoptosis of hepatocyte.
Collapse
|
10
|
Jiang D, Chu X, Hu L, Jiang S, Hu F, Sun J, Li C. Yizhi Xingnao prescription improves the cognitive function of patients after a transient ischemic attack. Neural Regen Res 2015; 7:434-9. [PMID: 25774185 PMCID: PMC4350129 DOI: 10.3969/j.issn.1673-5374.2012.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 12/22/2011] [Indexed: 11/18/2022] Open
Abstract
Patients with mild cognitive impairment after a transient ischemic attack were included in this study. They were treated with Yizhi Xingnao prescription, ergoloid mesylates or aspirin for 60 days. Evaluation using the Montreal Cognitive Assessment Scale showed that cognitive function was significantly improved in all patients, especially after the combined treatment of Yizhi Xingnao and aspirin. The scores from the Montreal Cognitive Assessment Scale were improved overall and the effective treatment rate was as high as 79%, which was higher than patients treated with a combination of ergoloid mesylates and aspirin, or aspirin alone. Our experimental findings indicate that Yizhi Xingnao prescription can improve mild cognitive impairment after a transient ischemic attack, and that it is more effective than ergoloid mesylates.
Collapse
Affiliation(s)
- Donglin Jiang
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Xing Chu
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Lingling Hu
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Shengyang Jiang
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Feng Hu
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Junming Sun
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| | - Chengwan Li
- The Third Affiliated Hospital of Nantong University, Wuxi 214000, Jiangsu Province, China
| |
Collapse
|
11
|
Choi MJ, Choi BT, Shin HK, Shin BC, Han YK, Baek JU. Establishment of a comprehensive list of candidate antiaging medicinal herb used in korean medicine by text mining of the classical korean medical literature, "dongeuibogam," and preliminary evaluation of the antiaging effects of these herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:873185. [PMID: 25861371 PMCID: PMC4377522 DOI: 10.1155/2015/873185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 12/28/2022]
Abstract
The major objectives of this study were to provide a list of candidate antiaging medicinal herbs that have been widely utilized in Korean medicine and to organize preliminary data for the benefit of experimental and clinical researchers to develop new drug therapies by analyzing previous studies. "Dongeuibogam," a representative source of the Korean medicine literature, was selected to investigate candidate antiaging medicinal herbs and to identify appropriate terms that describe the specific antiaging effects that these herbs are predicted to elicit. In addition, we aimed to review previous studies that referenced the selected candidate antiaging medicinal herbs. From our chosen source, "Dongeuibogam," we were able to screen 102 terms describing antiaging effects, which were further classified into 11 subtypes. Ninety-seven candidate antiaging medicinal herbs were selected using the criterion that their antiaging effects were described using the same terms as those employed in "Dongeuibogam." These candidates were classified into 11 subtypes. Of the 97 candidate antiaging medicinal herbs selected, 47 are widely used by Korean medical doctors in Korea and were selected for further analysis of their antiaging effects. Overall, we found an average of 7.7 previous studies per candidate herb that described their antiaging effects.
Collapse
Affiliation(s)
- Moo Jin Choi
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Byung Tae Choi
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Byung Cheul Shin
- Department of Korean Rehabilitation Medicine, Pusan National University Korean Medicine Hospital, Yangsan 626-789, Republic of Korea
| | - Yoo Kyoung Han
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Jin Ung Baek
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| |
Collapse
|