1
|
Yadav PK, Laxmikant SD. Ayurvedic management of hemangiomatous ulcer: A case report. J Ayurveda Integr Med 2024; 15:101056. [PMID: 39413552 PMCID: PMC11525132 DOI: 10.1016/j.jaim.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/19/2024] [Accepted: 08/24/2024] [Indexed: 10/18/2024] Open
Abstract
The most frequent infantile tumor is a hemangioma, and its most common complication is ulceration. A quickly progressing ulcer called a hemangioma can also result in secondary infection. The mechanism of ulcer formation is unknown but is thought to develop during the rapid growth phase. Infantile hemangiomas are diagnosed clinically, based on the progression of the lesion's history and a clinical examination. Physical interventions (laser surgery, cryosurgery, excision) and systemic corticosteroids or beta-blockers are the usual course of treatment; all carry the potential for substantial side effects. A two-month young female baby approached us, with a diagnosis of hemangiomatous ulcer. Skin grafting was advised by a plastic surgeon, but the baby's parents approached for Ayurveda treatment. The case was treated with oral medicine bilwadi agada and external treatments vranaprakshalana with triphala kwatha and jatyadi taila local application for 2 months. There was complete healing of the ulcer.
Collapse
Affiliation(s)
- Praveen Kumar Yadav
- Dept. of Shalya tantra, Sri Sai Ayurvedic Medical College & Hospital, Aligarh, India.
| | - S D Laxmikant
- Dept. of Shalya tantra, KAHER's Shri BMK Ayurveda Mahavidyalaya, Belagavi, India
| |
Collapse
|
2
|
Tzimas K, Antoniadou M, Varzakas T, Voidarou C(C. Plant-Derived Compounds: A Promising Tool for Dental Caries Prevention. Curr Issues Mol Biol 2024; 46:5257-5290. [PMID: 38920987 PMCID: PMC11201632 DOI: 10.3390/cimb46060315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
There is a growing shift from the use of conventional pharmaceutical oral care products to the use of herbal extracts and traditional remedies in dental caries prevention. This is attributed to the potential environmental and health implications of contemporary oral products. This comprehensive review aims at the analysis of plant-derived compounds as preventive modalities in dental caries research. It focuses on data collected from 2019 until recently, trying to emphasize current trends in this topic. The research findings suggest that several plant-derived compounds, either aqueous or ethanolic, exhibit notable antibacterial effects against Streptococcus mutans and other bacteria related to dental caries, with some extracts demonstrating an efficacy comparable to that of chlorhexidine. Furthermore, in vivo studies using plant-derived compounds incorporated in food derivatives, such as lollipops, have shown promising results by significantly reducing Streptococcus mutans in high-risk caries children. In vitro studies on plant-derived compounds have revealed bactericidal and bacteriostatic activity against S. mutans, suggesting their potential use as dental caries preventive agents. Medicinal plants, plant-derived phytochemicals, essential oils, and other food compounds have exhibited promising antimicrobial activity against oral pathogens, either by their anti-adhesion activity, the inhibition of extracellular microbial enzymes, or their direct action on microbial species and acid production. However, further research is needed to assess their antimicrobial activity and to evaluate the cytotoxicity and safety profiles of these plant-derived compounds before their widespread clinical use can be recommended.
Collapse
Affiliation(s)
- Konstantinos Tzimas
- Department of Operative Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Maria Antoniadou
- Department of Operative Dentistry, National and Kapodistrian University of Athens, 11521 Athens, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| | | |
Collapse
|
3
|
Banjan B, Raju R, Keshava Prasad TS, Abhinand CS. Computational identification of potential bioactive compounds from Triphala against alcoholic liver injury by targeting alcohol dehydrogenase. Mol Divers 2024:10.1007/s11030-024-10879-9. [PMID: 38743308 DOI: 10.1007/s11030-024-10879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Alcoholic liver injury resulting from excessive alcohol consumption is a significant social concern. Alcohol dehydrogenase (ADH) plays a critical role in the conversion of alcohol to acetaldehyde, leading to tissue damage. The management of alcoholic liver injury encompasses nutritional support and, in severe cases liver transplantation, but potential adverse effects exist, and effective medications are currently unavailable. Natural products with their potential benefits and historical use in traditional medicine emerge as promising alternatives. Triphala, a traditional polyherbal formula demonstrates beneficial effects in addressing diverse health concerns, with a notable impact on treating alcoholic liver damage through enhanced liver metabolism. The present study aims to identify potential active phytocompounds in Triphala targeting ADH to prevent alcoholic liver injury. Screening 119 phytocompounds from the Triphala formulation revealed 62 of them showing binding affinity to the active site of the ADH1B protein. Promising lipid-like molecule from Terminalia bellirica, (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid showed high binding efficiency to a competitive ADH inhibitor, 4-Methylpyrazole. Pharmacokinetic analysis further confirmed the drug-likeness and non-hepatotoxicity of the top-ranked compound. Molecular dynamics simulation and MM-PBSA studies revealed the stability of the docked complexes with minimal fluctuation and consistency of the hydrogen bonds throughout the simulation. Together, computational investigations suggest that (4aS, 6aR, 6aR, 6bR, 7R, 8aR, 9R, 10R, 11R, 12aR, 14bS)-7, 10, 11-trihydroxy-9-(hydroxymethyl)-2, 2, 6a, 6b, 9, 12a-hexamethyl-1, 3, 4, 5, 6, 6a, 7, 8, 8a, 10, 11, 12, 13, 14b-tetradecahydropicene-4a-carboxylic acid from the Triphala formulation holds promise as an ADH inhibitor, suggesting an alternative therapy for alcoholic liver injury.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine (CSBMM), Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
4
|
Rao S, Kini V, Hegde SK, Meera S, Rao P, George T, Baliga MS. Ayurvedic Drug Triphala in Combination with Providone Iodine Mitigates Radiation-Induced Mucositis in Head and Neck Cancer Patients without Affecting the Tumor Response. Indian J Otolaryngol Head Neck Surg 2023; 75:1480-1489. [PMID: 37636651 PMCID: PMC10447701 DOI: 10.1007/s12070-023-03516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Radiation-induced mucositis is a dose-limiting concern in the treatment of head and neck cancers (HNC). This study was conducted to determine the effectiveness of the Ayurvedic drug Triphala in reducing radiation-induced mucositis and influencing tumour control when combined with providone iodine. Data from patient files of HNC patients who received Triphala in conjunction with iodine or iodine alone over the course of curative radiotherapy (> 60 Gy) from May 2013 to February 2015 were extracted for this retrospective chart based study. Data was subjected to statistical analysis, X2 and unpaired t test using the Statistical Package for Social Sciences (SPSS), version 17 (IBM, Chicago, USA). When compared to iodine alone, the group that utilised Triphala gargling was very efficient in delaying mucositis, the extent of weight loss (p = 0.038), the incidence (p = 0.03), and the number (p = 0.02) of treatment breaks. However, it had no influence on the radiation-induced tumour response. According to the observations, Triphala coupled with iodine was more successful in preventing radiation mucositis, and without affecting the killing of tumour cells than iodine gargle alone. According to the authors, this is the first observation to demonstrate the value of combining providone iodine with Triphala in preventing radiation-induced oral mucositis.
Collapse
Affiliation(s)
- Suresh Rao
- Department of Radiation Oncology, Mangalore Institute of Oncology, Mangalore, 575002 India
| | - Venkataraman Kini
- Department of Radiation Oncology, Mangalore Institute of Oncology, Mangalore, 575002 India
| | - Sanath Kumar Hegde
- Department of Radiation Oncology, Mangalore Institute of Oncology, Mangalore, 575002 India
| | | | - Pratima Rao
- Department of Dentistry, Mangalore Institute of Oncology, Mangalore, 575002 India
| | - Thomas George
- Research Unit, Mangalore Institute of Oncology, Mangalore, 575002 India
| | | |
Collapse
|
5
|
Mosaddad SA, Hussain A, Tebyaniyan H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: A Narrative Review. Microorganisms 2023; 11:1269. [PMCID: PMC10220622 DOI: 10.3390/microorganisms11051269] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Periodontal diseases and dental caries are the most common infectious oral diseases impacting oral health globally. Oral cavity health is crucial for enhancing life quality since it serves as the entranceway to general health. The oral microbiome and oral infectious diseases are strongly correlated. Gram-negative anaerobic bacteria have been associated with periodontal diseases. Due to the shortcomings of several antimicrobial medications frequently applied in dentistry, the lack of resources in developing countries, the prevalence of oral inflammatory conditions, and the rise in bacterial antibiotic resistance, there is a need for reliable, efficient, and affordable alternative solutions for the prevention and treatment of periodontal diseases. Several accessible chemical agents can alter the oral microbiota, although these substances also have unfavorable symptoms such as vomiting, diarrhea, and tooth discoloration. Natural phytochemicals generated from plants that have historically been used as medicines are categorized as prospective alternatives due to the ongoing quest for substitute products. This review concentrated on phytochemicals or herbal extracts that impact periodontal diseases by decreasing the formation of dental biofilms and plaques, preventing the proliferation of oral pathogens, and inhibiting bacterial adhesion to surfaces. Investigations examining the effectiveness and safety of plant-based medicines have also been presented, including those conducted over the past decade.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Hamid Tebyaniyan
- Science and Research Branch, Islimic Azade University, Tehran 14878-92855, Iran
| |
Collapse
|
6
|
Antiplasmodial Properties of Aqueous and Ethanolic Extracts of Ten Herbal Traditional Recipes Used in Thailand against Plasmodium falciparum. Trop Med Infect Dis 2022; 7:tropicalmed7120417. [PMID: 36548672 PMCID: PMC9786625 DOI: 10.3390/tropicalmed7120417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
This study evaluated the in vitro and in vivo antiplasmodial efficacy and toxicity of aqueous and ethanolic extracts from traditional recipes used in Thailand. The aqueous and ethanolic extracts of ten traditional recipes were tested for in vitro antiplasmodial activity (parasite lactate dehydrogenase assay), cytotoxicity (MTT assay), and hemolysis). Oxidant levels were measured using cell-permeable probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate fluorescent dye-based assays. The best candidate was chosen for testing in mouse models using 4-day suppressive and acute toxicity assays. An in vitro study showed that ethanolic extracts and three aqueous extracts exhibited antiplasmodial activity, with an IC50 in the range of 2.8-15.5 µg/mL. All extracts showed high CC50 values, except for ethanolic extracts from Benjakul, Benjalotiga, and Trikatuk in HepG2 and Benjalotiga and aqueous extract from Chan-tang-ha in a Vero cell. Based on the results of the in vitro antiplasmodial activity, an aqueous extract of Triphala was chosen for testing in mouse models. The aqueous extract of Triphala exhibited good antiplasmodial activity, was safe at an oral dose of 2 g/kg, and is a potential candidate as a new source for the development of antimalarial drugs.
Collapse
|
7
|
Naik TD, Tubaki BR, Patankar DS. Efficacy of whole system ayurveda protocol in irritable bowel syndrome – A Randomized controlled clinical trial. J Ayurveda Integr Med 2022; 14:100592. [PMID: 36371363 PMCID: PMC10105243 DOI: 10.1016/j.jaim.2022.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is one of the clinically challenging disorders. It has a significant effect on health, cost and quality of life. Ayurveda management through whole system approach in IBS is explored. OBJECTIVE To evaluate the efficacy of whole system Ayurveda approach in IBS. METHODS The present trial is a randomized controlled parallel group study. 48 patients diagnosed as IBS (Rome IV Criteria) between the age group of 20-60 yrs were recruited in the study. Patients were randomly divided into 2 groups. KC group intervened with Kalingadi Churna 3 gm twice a day, before food with buttermilk. WS group intervened with whole system ayurveda protocol (WSAP). Duration of intervention was 60 days with follow up on every 15th day. Assessments were through various clinical measures like IBS Symptom Severity Score (IBS-SSS), IBS Adequate Relief (IBS-AR), Gastrointestinal symptom rating scale (GSRS), IBS-VAS, Complete Spontaneous Bowel Movements (CSBMs), Bristol Stool Form (BSF), Hamilton Anxiety Rating Scale (HARS), Hamilton Depression Rating Scale (HDRS), IBS quality of life (IBS-QoL) at every follow up. Hemoglobin, Erythrocyte sedimentation rate and stool examination was conducted at pre and post study. RESULTS Study showed that WS group had significant improvement compared to KC group in IBS-SSS, IBS-AR, IBS-VAS, CSBM, BSF-Diarrhea and BSF-Constipation. Both groups were comparable in GSRS, HARS, HDRS and IBS-QOL. Blood and stool parameters assessments showed comparable improvements in both the groups. Within group significant improvements in all the clinical assessment scales were observed in both the groups. CONCLUSION WSAP was effective in management of IBS (IBS constipation and IBS diarrhea). Improvements were observed in abdominal pain, stool frequency, consistency and adequate relief.
Collapse
Affiliation(s)
- Teja D Naik
- Department of Kayachikitsa, Shri BMK Ayurveda Mahavidyalaya, A Constituent Unit of KLE Academy of Higher Education & Research, Belagavi, Karnataka, 590003, India
| | - Basavaraj R Tubaki
- Department of Kayachikitsa, Shri BMK Ayurveda Mahavidyalaya, A Constituent Unit of KLE Academy of Higher Education & Research, Belagavi, Karnataka, 590003, India.
| | - Devayani S Patankar
- Department of Kayachikitsa, Shri BMK Ayurveda Mahavidyalaya, A Constituent Unit of KLE Academy of Higher Education & Research, Belagavi, Karnataka, 590003, India
| |
Collapse
|
8
|
Nontakham J, Siripong P, Sato H, Chewchinda S, Arunrungvichian K, Yahuafai J, Goli AS, Sato VH. Inhibitory effects of Triphala on CYP isoforms in vitro and its pharmacokinetic interactions with phenacetin and midazolam in rats. Heliyon 2022; 8:e09764. [PMID: 35785236 PMCID: PMC9243172 DOI: 10.1016/j.heliyon.2022.e09764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/12/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Context Direct evidence of Triphala-drug interactions has not been provided to date. Objective This study was aimed to determine the effects of Triphala on cytochrome P450 (CYP) isoforms and P-glycoprotein (P-gp) in vitro, and to investigate pharmacokinetic interactions of Triphala with CYP-probes in rats. Materials and methods Effects of Triphala on the activities of CYP isoforms and P-gp were examined using human liver microsomes (HLMs) and Caco-2 cells, respectively. Pharmacokinetic interactions between Triphala and CYP-probes (i.e., phenacetin and midazolam) were further examined in rats. Results Triphala extract inhibited the activities of CYP isoforms in the order of CYP1A2>3A4>2C9>2D6 with the IC50 values of 23.6 ± 9.2, 28.1 ± 9.8, 30.41 ± 16.7 and 93.9 ± 27.5 μg/mL, respectively in HLMs. It exhibited a non-competitive inhibition of CYP1A2 and 2C9 with the Ki values of 23.6 and 30.4 μg/mL, respectively, while its inhibition on CYP3A4 was competitive manner with the Ki values of 64.9 μg/mL. The inhibitory effects of Triphala on CYP1A2 and 3A4 were not time-dependent. Moreover, Triphala did not affect the P-gp activity in Caco-2 cells. Triphala, after its oral co-administration at 500 mg/kg, increased the bioavailabilities of phenacetin and midazolam by about 61.2% and 40.7%, respectively, in rats. Discussion and conclusions Increases observed in the bioavailabilities of phenacetin and midazolam after oral co-administration of Triphala in rats provided a direct line of evidence to show Triphala-drug interactions via inhibition of CYP1A and CYP3A activities, respectively. These results, together with the lack of time-dependency of CYP 1A2 and 3A4 inhibition in vitro, suggested that the inhibitory effect of Triphala is primarily reversible.
Collapse
|
9
|
Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic Combination Therapy: A Strategy to Overcome Bacterial Resistance to Aminoglycoside Antibiotics. Front Pharmacol 2022; 13:839808. [PMID: 35281905 PMCID: PMC8905495 DOI: 10.3389/fphar.2022.839808] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
After the first aminoglycoside antibiotic streptomycin being applied in clinical practice in the mid-1940s, aminoglycoside antibiotics (AGAs) are widely used to treat clinical bacterial infections and bacterial resistance to AGAs is increasing. The bacterial resistance to AGAs is owed to aminoglycoside modifying enzyme modification, active efflux pump gene overexpression and 16S rRNA ribosomal subunit methylation, leading to modification of AGAs' structures and decreased concentration of drugs within bacteria. As AGAs's side effects and bacterial resistance, the development of AGAs is time-consuming and difficult. Because bacterial resistance may occur in a short time after application in clinical practice, it was found that the antibacterial effect of the combination was not only better than that of AGAs alone but also reduce the dosage of antibiotics, thereby reducing the occurrence of side effects. This article reviews the clinical use of AGAs, the antibacterial mechanisms, the molecular mechanisms of bacterial resistance, and especially focuses a recent development of the combination of AGAs with other drugs to exert a synergistic antibacterial effect to provide a new strategy to overcome bacterial resistance to AGAs.
Collapse
Affiliation(s)
| | | | | | | | - Hong Zhou
- Key Laboratory of Basic Pharmacology, Ministry of Education and Joint Laboratory of International Cooperation, Ministry of Education of Characteristic Ethnic Medicine, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Punchihewa BT, Prashantha MAB, Godakumbura PI, Herapathdeniya SKMK. The chemical role of natural substances used in Lauha Bhasma preparation process. J Ayurveda Integr Med 2021; 13:100412. [PMID: 34872806 PMCID: PMC8717556 DOI: 10.1016/j.jaim.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/06/2021] [Accepted: 02/11/2021] [Indexed: 11/19/2022] Open
Abstract
Lauha Bhasma (LB) is a prominent Ayurveda medicine and uses as an ingredient to prepare other indigenous medicines in Ayurveda. The outcomes of this study on chemical and physical changes during the preparation process of LB become significant to explore ancient knowledge of east within the modern context. The preparation process of LB was carried out under laboratory conditions; starting from the elemental form of the Iron sample to identify the chemical and physical changes. The metallic composition of the starting material and intermediate products formed during the LB preparation process was determined using the AAS technique. The variation of the amount of Fe2+ and Fe3+ throughout the process and formation of nanoparticles was identified using quantitative analysis. Even though the amount of heavy metals (Cr, Cd, Cu, Pb, Zn, and Mn) present in the starting material is low, the trace level of heavy metals in the iron sample significantly reduces during the LB preparation process. Irregular-shaped, agglomerated, blackish red (Pakvajambuphala varna) fine LB powder formed at the end of the Putapaka step. The value of ancient knowledge can be revealed using the chemical and physical changes identified throughout the study on the LB preparation process.
Collapse
Affiliation(s)
- B T Punchihewa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - M A B Prashantha
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.
| | - P I Godakumbura
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - S K M K Herapathdeniya
- Department of Ayurveda Pharmacology and Pharmaceuticals, Institute of Indigenous Medicine, University of Colombo, Rajagiriya, Sri Lanka
| |
Collapse
|
11
|
Joshi A, Baheti A, Wani M, Nimbalkar R. A review through therapeutic attributes of Ayurvedic formulation mashi. J Ayurveda Integr Med 2021; 12:715-721. [PMID: 34776325 PMCID: PMC8642712 DOI: 10.1016/j.jaim.2021.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Mashi is a black colored powder formulation obtained after combustion of the plant or animal drug. It is prepared by bahirdhum padhati (outside) or anterdhum padhati (in the close vessel). In this dosage form, bulk of raw material is reduced to a greater extent by the application of a certain quantum of energy. Due to this treatment, hidden chemical constituents become prominent and/or a new chemical moiety is formed which is therapeutically active. This formulation is cost-effective and easy to prepare. This review article aims to highlight the different mashi formulations mentioned in Ayurvedic text and also incorporate the formulation not mentioned in the Ayurvedic text but used by Ayurvedic practitioners. The objective was to introduce researchers to the simple yet excellent formulation mashi which should be studied in detail to establish its identity, purity, and therapeutic activity.
Collapse
Affiliation(s)
- Ameya Joshi
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
| | - Akshay Baheti
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India.
| | - Manish Wani
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, 411038, India
| | | |
Collapse
|
12
|
Dowlath MJH, Karuppannan SK, Sinha P, Dowlath NS, Arunachalam KD, Ravindran B, Chang SW, Nguyen-Tri P, Nguyen DD. Effects of radiation and role of plants in radioprotection: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146431. [PMID: 34030282 DOI: 10.1016/j.scitotenv.2021.146431] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
Radiation can be lethal at high doses, whereas controlled doses are useful in medical applications. Other applications include power generation, agriculture sterilization, nuclear weapons, and archeology. Radiation damages genetic material, which is reflected in genotoxicity and can cause hereditary damage. In the medical field, it is essential to avoid the harmful effects of radiation. Radiation countermeasures and the need for radioprotective agents have been explored in recent years. Considering plants that evolve in radiative conditions, their ability to protect organisms against radiation has been studied and demonstrated. Crude extracts, fractioned extracts, isolated phytocompounds, and plant polysaccharides from various plants have been used in radioprotection studies, and their efficiency has been proven in various in vitro and in vivo experimental models. It is important to identify the mechanism of action to develop a potent plant-based radioprotective agent. To identify this protective mechanism, it is necessary to understand the damage caused by radiation in biological systems. This review intends to discuss the effects of ionizing radiation on biological systems and evaluate plant-based radioprotectants that have tested thus far as well as their mechanism of action in protecting against the toxic effects of radiation. From the review, the mechanism of radioprotection exhibited by the plant-based products could be understood. Meanwhile, we strongly suggest that the potential products identified so far should undergo clinical trials for critically evaluating their effects and for developing an ideal and compatible radioprotectant with no side-effects.
Collapse
Affiliation(s)
- Mohammed Junaid Hussain Dowlath
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Sathish Kumar Karuppannan
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Pamela Sinha
- Project Management, Bioneeds India Pvt. Ltd, Peenya Industrial Area, Bengaluru 560058, India
| | - Nihala Sultana Dowlath
- Department of Biochemistry, Ethiraj College for Women, Chennai, Tamil Nadu 600008, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - B Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| | - S Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Phuong Nguyen-Tri
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam; Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| |
Collapse
|
13
|
Wei X, Luo C, He Y, Huang H, Ran F, Liao W, Tan P, Fan S, Cheng Y, Zhang D, Lin J, Han L. Hepatoprotective Effects of Different Extracts From Triphala Against CCl 4-Induced Acute Liver Injury in Mice. Front Pharmacol 2021; 12:664607. [PMID: 34290606 PMCID: PMC8287969 DOI: 10.3389/fphar.2021.664607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Background:Triphala is a traditional polyherbal formula used in Indian Ayurvedic and Chinese Tibetan medicine. A wide range of biological activities have been attributed to Triphala, but the impact of various extraction methods on efficacy has not been determined. Purpose: The study aimed to evaluate Triphala extracts obtained by various methods for their hepatoprotective effects and molecular mechanisms in a mouse model of carbon tetrachloride (CCl4)-induced liver injury. Methods: HPLC fingerprinting was used to characterize the chemical characteristics of Triphala extracts obtained by (a) 0.5 h ultrasonication, (b) 2 h reflux, and (c) 4 h reflux. Hepatoprotective efficacy was evaluated in a mouse model of CCl4-induced liver damage. Serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) were measured, as well as the liver antioxidant and inflammatory markers malondialdehyde superoxide dismutase glutathione peroxidase (GSH-Px), TNF-α, and IL-6. Gene and protein expression of Nrf-2 signaling components Nrf-2, heme oxygenase (HO-1), and NADPH Quinone oxidoreductase (NQO-1) in liver tissue were evaluated by real-time PCR and western blotting. Results: Chemical analysis showed a clear difference in content between extracts produced by ultrasonic and reflux methods. The pharmacological analysis showed that all three Triphala extracts reduced ALT, AST, MDA, TNF-α, and IL-6 levels and increased SOD and GSH-Px. Triphala extracts also induced transcript and protein expression of Nrf-2, HO-1, and NQO-1. Conclusion: Triphala extract prevents CCl4-induced acute liver injury. The ultrasonic extract of Triphala was most effective, suggesting that hepatoprotection may be related to the larger tannins via activation of Nrf-2 signaling.
Collapse
Affiliation(s)
- Xichuan Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Ran
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu, China
| | - Sanhu Fan
- Sanajon Pharmaceutical Group, Chengdu, China
| | - Yuan Cheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Suryavanshi SV, Barve K, Addepalli V, Utpat SV, Kulkarni YA. Triphala Churna-A Traditional Formulation in Ayurveda Mitigates Diabetic Neuropathy in Rats. Front Pharmacol 2021; 12:662000. [PMID: 34149415 PMCID: PMC8211421 DOI: 10.3389/fphar.2021.662000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Neuropathy is a common complication of diabetes affecting a large number of people worldwide. Triphala churna is a formulation mentioned in Ayurveda-a traditional system of medicine. It is a simple powder formulation consisting of powders of three fruits, Emblica officinalis L., Terminalia bellirica (Gaertn.) Roxb. and Terminalia chebula Retz. Individual components of Triphala churna have anti-diabetic and antioxidant activities. Hence, this study was designed to evaluate the effect of Triphala churna on diabetic neuropathy. Diabetes was induced with streptozotocin (STZ, 55 mg/kg, i. p.) in rats. Animals were grouped and treated orally with Triphala churna at a dose of 250, 500, and 1,000 mg/kg after 6 weeks of diabetes induction for the next 4 weeks. At the end of study, parameters such as body weight, plasma glucose level, motor nerve conduction velocity were determined. The effect of Triphala churna on thermal hyperalgesia, mechanical hyperalgesia, and mechanical allodynia was also determined at the end of study. The plasma cytokine levels like TGF-β1, TNF-α, and IL-1β were determined by ELISA assay. Histopathology study of the sciatic nerve was studied. Western blotting was performed to study the expression of neuronal growth factor.Treatment with Triphala churna showed a significant reduction in plasma glucose and a significant rise in body weight. Triphala treatment significantly increased the motor nerve conduction velocity and decreased the thermal and mechanical hyperalgesia, as well as mechanical allodynia. The treatment significantly inhibited levels of circulatory cytokines like TGF-β1, TNF-α, and IL-1β. Histopathology study confirmed the neuroprotective effect of Triphala churna. The expression of NGF was significantly increased in sciatic nerves after treatment with Triphala churna. From the results, it can be concluded that Triphala churna delays the progression of neuropathy in diabetic rats.
Collapse
Affiliation(s)
- Sachin V Suryavanshi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Kalyani Barve
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Veeranjaneyulu Addepalli
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Sachin V Utpat
- MES Ayurveda Mahavidyalaya, Ghanekhunt-Lote, Ratnagiri, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
15
|
Phimarn W, Sungthong B, Itabe H. Effects of Triphala on Lipid and Glucose Profiles and Anthropometric Parameters: A Systematic Review. J Evid Based Integr Med 2021; 26:2515690X211011038. [PMID: 33886393 PMCID: PMC8072855 DOI: 10.1177/2515690x211011038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim. The efficacy of triphala on lipid profile, blood glucose and anthropometric parameters and its safety were assessed. Methods. Databases such as PubMed, ScienceDirect, Web of Science, and Thai Library Integrated System (ThaiLIS) were systematically searched to review current evidence of randomized controlled trials (RCT) on triphala. RCTs investigating the safety and efficacy of triphala on lipid profile, blood glucose and anthropometric parameters were included. Study selection, data extraction, and quality assessment were performed independently by 2 authors. Results. Twelve studies on a total of 749 patients were included. The triphala-treated groups showed significantly reduced low-density lipoprotein-cholesterol, total cholesterol and triglyceride in 6 studies. Five RCTs demonstrated triphala-treated groups led to statistically significant decrease in body weight, body mass index and waist circumference of obese patients. Moreover, triphala significantly decreased fasting blood glucose level in diabetic patients but not in people without diabetes. No serious adverse event associated with triphala was reported during treatment. Conclusions. This review summarized a current evidence to show triphala might improve the lipid profile, blood glucose, the body weight, body mass index and waist circumference under certain conditions. However, large well-designed RCTs are required to confirm this conclusion.
Collapse
Affiliation(s)
- Wiraphol Phimarn
- Social Pharmacy Research Unit, Faculty of Pharmacy, 54783Mahasarakham University, Kantharawichai, Maha Sarakham, Thailand.,Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Bunleu Sungthong
- Pharmaceutical Chemistry and Natural Products Research Unit, Faculty of Pharmacy, Mahasarakham University, Kantharawichai, Maha Sarakham, Thailand
| | - Hiroyuki Itabe
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
16
|
Gregory J, Vengalasetti YV, Bredesen DE, Rao RV. Neuroprotective Herbs for the Management of Alzheimer's Disease. Biomolecules 2021; 11:biom11040543. [PMID: 33917843 PMCID: PMC8068256 DOI: 10.3390/biom11040543] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background—Alzheimer’s disease (AD) is a multifactorial, progressive, neurodegenerative disease that is characterized by memory loss, personality changes, and a decline in cognitive function. While the exact cause of AD is still unclear, recent studies point to lifestyle, diet, environmental, and genetic factors as contributors to disease progression. The pharmaceutical approaches developed to date do not alter disease progression. More than two hundred promising drug candidates have failed clinical trials in the past decade, suggesting that the disease and its causes may be highly complex. Medicinal plants and herbal remedies are now gaining more interest as complementary and alternative interventions and are a valuable source for developing drug candidates for AD. Indeed, several scientific studies have described the use of various medicinal plants and their principal phytochemicals for the treatment of AD. This article reviews a subset of herbs for their anti-inflammatory, antioxidant, and cognitive-enhancing effects. Methods—This article systematically reviews recent studies that have investigated the role of neuroprotective herbs and their bioactive compounds for dementia associated with Alzheimer’s disease and pre-Alzheimer’s disease. PubMed Central, Scopus, and Google Scholar databases of articles were collected, and abstracts were reviewed for relevance to the subject matter. Conclusions—Medicinal plants have great potential as part of an overall program in the prevention and treatment of cognitive decline associated with AD. It is hoped that these medicinal plants can be used in drug discovery programs for identifying safe and efficacious small molecules for AD.
Collapse
Affiliation(s)
- Julie Gregory
- Apollo Health, P.O. Box 117040, Burlingame, CA 94011, USA;
| | | | - Dale E. Bredesen
- Apollo Health, P.O. Box 117040, Burlingame, CA 94011, USA;
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90024, USA
- Correspondence: (D.E.B.); (R.V.R.)
| | - Rammohan V. Rao
- Apollo Health, P.O. Box 117040, Burlingame, CA 94011, USA;
- California College of Ayurveda, 700 Zion Street, Nevada City, CA 95959, USA
- Correspondence: (D.E.B.); (R.V.R.)
| |
Collapse
|
17
|
Protective Effect of Triphala against Oxidative Stress-Induced Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6674988. [PMID: 33898626 PMCID: PMC8052154 DOI: 10.1155/2021/6674988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022]
Abstract
Background Oxidative stress is implicated in the progression of many neurological diseases, which could be induced by various chemicals, such as hydrogen peroxide (H2O2) and acrylamide. Triphala is a well-recognized Ayurvedic medicine that possesses different therapeutic properties (e.g., antihistamine, antioxidant, anticancer, anti-inflammatory, antibacterial, and anticariogenic effects). However, little information is available regarding the neuroprotective effect of Triphala on oxidative stress. Materials and Methods An in vitro H2O2-induced SH-SY5Y cell model and an in vivo acrylamide-induced zebrafish model were established. Cell viability, apoptosis, and proliferation were examined by MTT assay, ELISA, and flow cytometric analysis, respectively. The molecular mechanism underlying the antioxidant activity of Triphala against H2O2 was investigated dose dependently by Western blotting. The in vivo neuroprotective effect of Triphala on acrylamide-induced oxidative injury in Danio rerio was determined using immunofluorescence staining. Results The results indicated that Triphala plays a neuroprotective role against H2O2 toxicity in inhibiting cell apoptosis and promoting cell proliferation. Furthermore, Triphala pretreatment suppressed the phosphorylation of the mitogen-activated protein kinase (MARK) signal pathway (p-Erk1/2, p-JNK1/2, and p-p38), whereas it restored the activities of antioxidant enzymes (superoxide dismutase 1 (SOD1) and catalase) in the H2O2-treated SH-SY5Y cells. Consistently, similar protective effects of Triphala were observed in declining neuroapoptosis and scavenging free radicals in the zebrafish central neural system, possessing a critical neuroprotective property against acrylamide-induced oxidative stress. Conclusion In summary, Triphala is a promising neuroprotective agent against oxidative stress in SH-SY5Y cells and zebrafishes with significant antiapoptosis and antioxidant activities.
Collapse
|
18
|
Bhatia P, Sharma A, George AJ, Anvitha D, Kumar P, Dwivedi VP, Chandra NS. Antibacterial activity of medicinal plants against ESKAPE: An update. Heliyon 2021; 7:e06310. [PMID: 33718642 PMCID: PMC7920328 DOI: 10.1016/j.heliyon.2021.e06310] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/28/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance has emerged as a threat to global health, food security, and development today. Antibiotic resistance can occur naturally but mainly due to misuse or overuse of antibiotics, which results in recalcitrant infections and Antimicrobial Resistance (AMR) among bacterial pathogens. These mainly include the MDR strains (multi-drug resistant) of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). These bacterial pathogens have the potential to “escape” antibiotics and other traditional therapies. These bacterial pathogens are responsible for the major cases of Hospital-Acquired Infections (HAI) globally. ESKAPE Pathogens have been placed in the list of 12 bacteria by World Health Organisation (WHO), against which development of new antibiotics is vital. It not only results in prolonged hospital stays but also higher medical costs and higher mortality. Therefore, new antimicrobials need to be developed to battle the rapidly evolving pathogens. Plants are known to synthesize an array of secondary metabolites referred as phytochemicals that have disease prevention properties. Potential efficacy and minimum to no side effects are the key advantages of plant-derived products, making them suitable choices for medical treatments. Hence, this review attempts to highlight and discuss the application of plant-derived compounds and extracts against ESKAPE Pathogens.
Collapse
Affiliation(s)
- Priya Bhatia
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Anushka Sharma
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Abhilash J George
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - D Anvitha
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Pragya Kumar
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Nidhi S Chandra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
| |
Collapse
|
19
|
Ikram A, Saeed F, Munir H, Sultan MT, Afzaal M, Ahmed A, Anjum FM. Exploring the amino acid profile and microbial properties of locally sweet preserved kachra hareer ( Terminalia chebula). Food Sci Nutr 2021; 9:909-919. [PMID: 33598174 PMCID: PMC7866582 DOI: 10.1002/fsn3.2056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022] Open
Abstract
The current research was designed to determine the amino acid profile and microbial properties of kachra hareer. For the purpose, kachra hareer was purchased with their brand names coded as S1, S2, S3, and S4 from five towns named as L1, L2, L3, L4, and L5. The samples were analyzed for their amino acid profile and microbial properties, while the water and alcohol extractive values were analyzed to obtain the different levels of purity during processing. The results explained that physicochemical analyses, that is, pH, moisture, acidity, and vitamin C, ranged from 4.67% to 9.44%, 22% to 40%, 0.054% to 1.44%, and 7.67% to 19.36%, respectively. However, essential amino acids histidine, isoleucine, leucine, methionine, phenylalanine, proline, threonine, and valine ranged from 470.3 to 484.5, 516.1 to 527.5, 805.5 to 817.4, 910.1 to 922.5, 240.2 to 250.5, 508.2 to 518.2, 1,160.5 to 1,172.6, 466.9 to 476.3, and 502.5 to 513.4 mg/kg, respectively, whereas nonessential amino acids alanine, arginine, aspartic acid cysteine, glutamic acid, serine, tyrosine, and glycine ranged from 612.7 to 628.2, 1,212.3 to 1,225.9, 7,254.2 to 7,258.8, ND, 1,561.2 to 1,575.2, 634.8 to 648.9, 618.4 to 630.4, and 712.8 to 723.7 mg/kg, respectively. Conclusively, sample S2 showed the maximum nutritional content and minimum microbial load.
Collapse
Affiliation(s)
- Ali Ikram
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Haroon Munir
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | | | - Muhammad Afzaal
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Aftab Ahmed
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | | |
Collapse
|
20
|
Tiwana G, Cock IE, White A, Cheesman MJ. Use of specific combinations of the triphala plant component extracts to potentiate the inhibition of gastrointestinal bacterial growth. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112937. [PMID: 32464314 DOI: 10.1016/j.jep.2020.112937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Triphala is used in Ayurveda to treat a wide variety of diseases, including numerous bacterial infections. Interestingly, the plant components of triphala (Terminalia bellirica, Terminalia chebula and Emblica officinalis) are also good inhibitors of bacterial growth when used individually, yet plant preparations are generally used in combination in traditional medicine. Surprisingly, no previous studies have addressed the reason why the combination is preferred over the individual components to treat bacterial infections. AIM OF THE STUDY To test and compare the antibacterial efficacy of triphala and its component parts to quantify their relative efficacies. The individual plant components will also be tested as combinations, thereby determining whether combining the individual components potentiates the antibacterial activity of the components used alone. MATERIALS AND METHODS Triphala and the three individual plant components were extracted using solvents of varying polarity (methanol, water, ethyl acetate) and the antibacterial activity of the aqueous resuspensions was quantified by disc diffusion and broth microdilution MIC assays. Combinations of extracts produced from the individual components were also tested against each bacterial species and the ΣFICs was calculated to determine the class of interaction. Where synergy was detected, isobologram analysis was used to determine the optimal component ratios. The Artemia nauplii bioassay was used to test for toxicity and GC-MS headspace profiling analysis was used to highlight terpenoid components that may contribute to the antibacterial activity of triphala. RESULTS The aqueous and methanolic triphala, T. bellirica, T. chebula and E. officinalis extracts displayed good inhibitory activity against all bacterial strains, with MICs often in the 250-750 μg/mL range. The methanolic extracts were generally more potent than the aqueous extracts and T. chebula was the most potent of the individual plant components. Combining the extracts of the different plant species resulted in potentiation of the growth inhibitory activity of most combinations compared to that of the individual components. Indeed, with the exception of S. flexneri, all bacterial species were potentiated by at least one combination of methanolic plant extracts, with a substantial proportion of these displaying synergistic interactions. All extracts were found to be either non-toxic, or of low to moderate toxicity in Artemia nauplii assays. CONCLUSION Whilst the individual plant components of triphala all inhibit the growth of multiple pathogenic bacteria, the activity is potentiated for multiple combinations. Therefore, the traditional usage of the combination of the three plant materials in triphala not only extends the activity profile of the mixture over that of the individual components, but it also substantially potentiates the inhibitory activity towards multiple bacteria, partially explaining the preference of triphala compared to the individual components.
Collapse
Affiliation(s)
- Gagan Tiwana
- School of Pharmacy and Pharmacology, Gold Coast Campus, Griffith University, Parklands Drive, Southport, Queensland, 4222, Australia; Menzies Health Institute Queensland, Quality Use of Medicines Network, Queensland, 4222, Australia
| | - Ian E Cock
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; Environmental Futures Research Institute, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia.
| | - Alan White
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia
| | - Matthew J Cheesman
- School of Pharmacy and Pharmacology, Gold Coast Campus, Griffith University, Parklands Drive, Southport, Queensland, 4222, Australia; Menzies Health Institute Queensland, Quality Use of Medicines Network, Queensland, 4222, Australia.
| |
Collapse
|
21
|
Gupta A, Kumar R, Bhattacharyya P, Bishayee A, Pandey AK. Terminalia bellirica (Gaertn.) roxb. (Bahera) in health and disease: A systematic and comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153278. [PMID: 32781393 DOI: 10.1016/j.phymed.2020.153278] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/18/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Terminalia bellirica (Gaertn.) Roxb. is one of the oldest medicinal herbs of India, Pakistan, Nepal, Bangladesh and Sri Lanka as well as South-East Asia. Its medicinal utility has been described in the different traditional medicinal systems, such as Ayurveda, Unani, Siddha, and traditional Chinese medicine. PURPOSE The present study is aimed at providing a comprehensive overview on the traditional medicinal use, major phytoconstituents, biological and pharmacological activities and related mechanisms of actions and clinical studies of T. bellirica. Another objective is to describe current limitations and future direction of T. bellirica-related research. METHODS PubMed, ScienceDirect, Scopus, Cochrane Library, and EBOSCO host databases were selected to explore literature published between 1980 and 2020 (till March). Keywords used in various combinations comprised of Terminalia bellirica, phytoconstituents, health effects, pharmacological activities, molecular targets, in vitro, in vivo, clinical studies, and disease prevention. RESULTS A broad spectrum in vitro and in vivo studies suggested various biological and pharmacological effects, including antioxidant, anti-inflammatory, immunomodulatory, antimicrobial, hepatoprotective, renoprotective, antidiabetic, anti-hyperlipidemic, and anticancer activities. Diverse bioactivities of T. bellirica have been ascribed to the presence of many bioactive phytochemicals, such as glucoside, tannins, gallic acid, corilagin, ellagic acid, ethyl gallate, galloyl glucose, chebulagic acid, and arjunolic acid. CONCLUSION Preclinical and clinical studies have suggested that T. bellirica plant and its phytoconstituents have immense potential for prevention and treatment of various diseases. Additional in vivo studies and clinical trials are warranted to realize the complete medicinal attributes of this plant.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj - 211 002, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj - 211 002, Uttar Pradesh, India
| | - Piyali Bhattacharyya
- Department of Nutrition, School of Health Sciences, Ana G. Méndez University, Gurabo, PR 00778, United States
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States.
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj - 211 002, Uttar Pradesh, India.
| |
Collapse
|
22
|
Effects of Pistacia lentiscus and Coriander Triphala on Adult Gastroesophageal Reflux Disease: A Randomized Double-Blinded Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2020. [DOI: 10.5812/ircmj.102260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: The cardinal symptoms of gastroesophageal reflux disease include heartburn (pyrosis) and regurgitation. Conventional treatment is done by proton pump inhibitors. In Persian traditional medicine, several herbs (single or combined) have been used to treat gastrointestinal disorders. Objectives: This study aimed to assess the effects of Pistacia lentiscus (mastic) and Coriander Triphala on reflux symptoms compared to omeprazole in a double-blinded randomized clinical trial. Methods: In a double-blinded, multicenter, randomized clinical trial, we assessed the effects of Pistacia lentiscus L., Coriander Triphala, and omeprazole on the symptoms of GERD in Tabriz, Iran, in 2018 - 2019. Thus, 105 patients with GERD symptoms were assigned randomly to three groups as group A (Pistacia lentiscus L., 1000 mg/TDS), group B (Coriander Triphala, 1000 mg/TDS), and group C (omeprazole, 20 mg/day plus five placebo capsules per day). The assessments were done at the beginning and the end of the study using FSSG, VAS, RS, and GERD-HRQL questionnaires. Results: In the beginning, no significant differences were observed between the groups in the background characteristics. There was no statistically significant difference between Pistacia lentiscus, Coriander Triphala, and omeprazole in the improvement of FSSG, VAS, GERD-HRQL, and reflux scores. In all groups, the FFSG, VAS, reflux, and GERD-HRQL scores significantly decreased and improved after four weeks of intervention compared to the respective baselines. The FSSG score improvements after four weeks of intervention were 73.68%, 83.33%, and 68.62%, in groups A, B, and C, respectively. The VAS score improvements were 66.66%, 75.00%, and 62.50% in groups A, B, and C, respectively. Improvements in GERD-HRQL were 90.00%, 91.28%, and 82.00%, in groups A, B, and C, respectively. Reflux improvements were 66.66%, 80.00%, and 66.66% in groups A, B, and C, respectively. Conclusions: The results showed that Pistacia lentiscus and Coriander Triphala are as effective as omeprazole in the treatment of GERD.
Collapse
|
23
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
24
|
Phetkate P, Kummalue T, Rinthong PO, Kietinun S, Sriyakul K. Study of the safety of oral Triphala aqueous extract on healthy volunteers. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:35-40. [DOI: 10.1016/j.joim.2019.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023]
|
25
|
Rinthong PO, Mudjupa C. In vitro 3-Hydroxy-3-methylglutaryl-coenzyme: A reductase inhibition assay of triphala ayurvedic formulation. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_68_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Neuroprotective behaviour of Phyllanthus emblica (L) on human neural cell lineage (PC12) against glutamate-induced cytotoxicity. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Salehi B, Ata A, V. Anil Kumar N, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, Abdulmajid Ayatollahi S, Valere Tsouh Fokou P, Kobarfard F, Amiruddin Zakaria Z, Iriti M, Taheri Y, Martorell M, Sureda A, N. Setzer W, Durazzo A, Lucarini M, Santini A, Capasso R, Adrian Ostrander E, -ur-Rahman A, Iqbal Choudhary M, C. Cho W, Sharifi-Rad J. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019; 9:E551. [PMID: 31575072 PMCID: PMC6843349 DOI: 10.3390/biom9100551] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is one of the major health problems in the world, the incidence and associated mortality are increasing. Inadequate regulation of the blood sugar imposes serious consequences for health. Conventional antidiabetic drugs are effective, however, also with unavoidable side effects. On the other hand, medicinal plants may act as an alternative source of antidiabetic agents. Examples of medicinal plants with antidiabetic potential are described, with focuses on preclinical and clinical studies. The beneficial potential of each plant matrix is given by the combined and concerted action of their profile of biologically active compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada;
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India;
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan;
| | - Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile;
| | - Ana Ruiz-Ortega
- Facultad de Educación y Ciencias Sociales, Universidad Andrés Bello, Autopista Concepción—Talcahuano, Concepción 7100, Chile;
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Patrick Valere Tsouh Fokou
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde P.O. Box 812, Cameroon;
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Zainul Amiruddin Zakaria
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Integrative Pharmacogenomics Institute (iPROMISE), Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam Selangor 42300, Malaysia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (S.A.A.); (F.K.); (Y.T.)
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepción 4070386, Chile;
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Laboratory of Physical Activity Sciences, and CIBEROBN—Physiopathology of Obesity and Nutrition, CB12/03/30038, University of Balearic Islands, E-07122 Palma de Mallorca, Spain;
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA;
| | - Alessandra Durazzo
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA—Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49-80131 Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI 49503, USA;
| | - Atta -ur-Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.-u.-R.); (M.I.C.)
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.-u.-R.); (M.I.C.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Javad Sharifi-Rad
- Department of Pharmacology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft 7861756447, Iran
| |
Collapse
|
28
|
Manoraj A, Thevanesam V, Bandara BMR, Ekanayake A, Liyanapathirana V. Synergistic activity between Triphala and selected antibiotics against drug resistant clinical isolates. Altern Ther Health Med 2019; 19:199. [PMID: 31375093 PMCID: PMC6679468 DOI: 10.1186/s12906-019-2618-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/25/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Triphala is an indigenous medical product used for a variety of diseases. This study was conducted to determine the effect of Triphala on antibiotic properties of gentamicin and oxacillin against multi-drug resistant organisms. METHODS The checkerboard method was used to determine the synergy of Triphala with gentamicin and oxacillin against multi-drug resistant (MDR) Gram negative bacilli and methicillin-resistant Staphylococcus aureus (MRSA) using 2,3,5-triphenyltetrazolium chloride (TTC) assay. Fractional inhibitory concentration (FIC) index was calculated. RESULTS When tested alone, the minimum inhibitory concentration (MIC) values of gentamicin for Gram negative isolates ranged from 8 to > 64 μg/ml. The MIC values of gentamicin for the Gram negative isolates ranged from 1 to 32 μg/ml when tested with Triphala. The FIC index was < 1 indicating a synergistic interaction in 10 of the 11 isolates and it was 1 indicating an additive effect in one isolate. The MIC values of oxacillin for MRSA isolates ranged from 4 to > 16 μg/ml with all MICs being equal to or higher than the resistance cut-off level. The MIC level with the addition of Triphala ranged from 0.25 to 4 μg/ml. FIC index was < 1 for all tested isolates indicating a synergistic interaction. CONCLUSIONS Triphala has synergistic activity with gentamicin against the selected MDR Gram negative bacilli and with oxacillin against MRSA isolates warranting further studies on the possibility of clinical use.
Collapse
|
29
|
Bactericidal activity of ayurvedic formulation against cariogenic microorganisms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Yamakami Y, Morino K, Takauji Y, Kasukabe R, Miki K, Hossain MN, Ayusawa D, Fujii M. Extract of Emblica officinalis enhances the growth of human keratinocytes in culture. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:141-146. [PMID: 30709781 DOI: 10.1016/j.joim.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/18/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Keratinocytes are the predominant cell type in the epidermis and play key roles in epidermal function. Thus, identification of the compounds that regulate the growth of keratinocytes is of importance. Here we searched for such compounds from the herbs used in traditional medicine Ayurveda. METHODS Human keratinocytes were cultured in the presence or absence of the herbal extracts for 2 weeks; the effect of the extracts on cell growth was determined by staining the cells with Coomassie brilliant blue. To detect the compounds that regulate the growth of keratinocytes, the herbal extracts were subjected to high-performance liquid chromatography (HPLC). RESULTS We found that the extract of Emblica officinalis enhanced the growth of keratinocytes in culture. Further, we fractionated the extract of E. officinalis using HPLC and identified the fractions responsible for the enhanced growth of keratinocytes. CONCLUSION The extract of E. officinalis enhanced the growth of human keratinocytes in culture. E. officinalis contains the compounds that would be beneficial for human skin health because enhanced growth of keratinocytes would promote wound healing.
Collapse
Affiliation(s)
- Yoshimi Yamakami
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kyoko Morino
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuki Takauji
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan; Ichiban Life Corporation, Naka-ku, Yokohama 231-0048, Japan
| | - Ryuichiro Kasukabe
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kensuke Miki
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan; Ichiban Life Corporation, Naka-ku, Yokohama 231-0048, Japan
| | | | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan; Ichiban Life Corporation, Naka-ku, Yokohama 231-0048, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
31
|
Bopardikar M, Bhattacharya A, Rao Kakita VM, Rachineni K, Borde LC, Choudhary S, Koti Ainavarapu SR, Hosur RV. Triphala inhibits alpha-synuclein fibrillization and their interaction study by NMR provides insights into the self-association of the protein. RSC Adv 2019; 9:28470-28477. [PMID: 35529629 PMCID: PMC9071048 DOI: 10.1039/c9ra05551g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
The process of assembly and accumulation of the intrinsically disordered protein (IDP), alpha-synuclein (αSyn) into amyloid fibrils is a pathogenic process leading to several neurodegenerative disorders such as Parkinson's disease, multiple system atrophy and others. Although several molecules are known to inhibit αSyn fibrillization, the mechanism of inhibition is just beginning to emerge. Here, we report the inhibition of fibrillization of αSyn by Triphala, a herbal preparation in the traditional Indian medical system of Ayurveda. Triphala was found to be a rich source of polyphenols which are known to act as amyloid inhibitors. ThT fluorescence and TEM studies showed that Triphala inhibited the fibrillization of αSyn. However, it was observed that Triphala does not disaggregate preformed αSyn fibrils. Further, native-PAGE showed that Triphala reduces the propensity of αSyn to oligomerize during the lag phase of fibrillization. Our NMR results showed that certain stretches of residues in the N-terminal and NAC regions of αSyn play an anchor role in the self-association process of the protein, thereby providing mechanistic insights into the early events during αSyn fibrillization. Triphala inhibits αSyn self-association by interacting with anchoring regions which are responsible for αSyn oligomerization.![]()
Collapse
Affiliation(s)
- Mandar Bopardikar
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Mumbai 400005
- India
| | - Anusri Bhattacharya
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Kalina Campus
- Mumbai 400098
- India
| | - Veera Mohana Rao Kakita
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Kalina Campus
- Mumbai 400098
- India
| | - Kavitha Rachineni
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Kalina Campus
- Mumbai 400098
- India
| | - Lalit C. Borde
- Department of Biological Sciences
- Tata Institute of Fundamental Research
- Mumbai 400005
- India
| | - Sinjan Choudhary
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Kalina Campus
- Mumbai 400098
- India
| | | | - Ramakrishna V. Hosur
- Department of Chemical Sciences
- Tata Institute of Fundamental Research
- Mumbai 400005
- India
- UM-DAE Centre for Excellence in Basic Sciences
| |
Collapse
|
32
|
Wang M, Li Y, Hu X. Chebulinic acid derived from triphala is a promising antitumour agent in human colorectal carcinoma cell lines. Altern Ther Health Med 2018; 18:342. [PMID: 30587184 PMCID: PMC6307174 DOI: 10.1186/s12906-018-2412-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/17/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Triphala is an Ayurvedic rasayana formulation reputed for its antitumour activities, and chebulinic acid and chebulagic acid, along with other phenolic acids, have been proposed to be responsible for its effects. METHODS In this study, the anti-proliferative activities of these agents were evaluated in colorectal carcinoma cell lines with three phenotypes exposed to several batches of triphala samples with different quantities of chebulinic acid and chebulagic acid. The pro-apoptotic and anti-migratory activities and the probable antitumour mechanisms of the more potent anti-proliferative phytochemical were also investigated. RESULTS The results demonstrated that chebulinic acid, which exerts potent anti-proliferative, pro-apoptotic and anti-migratory effects, is a key molecule for maintaining the antitumour efficacy of triphala. The antitumour mechanism of chebulinic acid is probably related to the PI3K/AKT and MAPK/ERK pathways. CONCLUSIONS Chebulinic acid is not only a critical component of the anticancer activities of triphala but also a promising natural multi-target antitumour agent with therapeutic potential.
Collapse
|
33
|
Westfall S, Lomis N, Prakash S. A polyphenol-rich prebiotic in combination with a novel probiotic formulation alleviates markers of obesity and diabetes in Drosophila. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
Huang HZ, Zhao SY, Ke XM, Lin JZ, Huang SS, Xu RC, Ma HY, Zhang Y, Han L, Zhang DK. Study on the stability control strategy of Triphala solution based on the balance of physical stability and chemical stabilities. J Pharm Biomed Anal 2018; 158:247-256. [PMID: 29890481 DOI: 10.1016/j.jpba.2018.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/15/2018] [Accepted: 06/03/2018] [Indexed: 10/14/2022]
Abstract
Triphala is a well-known prescription in Indian Ayurveda and TCM medicine for its great effect on gingivitis and hyperlipidemia. However, its solution is unstable for the containing of excessive polyphenol, leading to the production of sediment in the short term and the decrease of efficacy. Based on the analysis of sediment formation, a novel control strategy is proposed. To conduct the analysis, the sediment formation was recorded for a consecutive five days. The changes in the composition of the supernatant and the sediment were studied by the HPLC profile analysis. The main components of the sediment were identified as corilagin, ellagic acid and gallic acid, and the amount of ellagic acid sediment increased with the storage time. Then, with a series of pH status adjustments of the Triphala solution, the physical and chemical stabilities were acquired by Turbiscan and HPLC respectively. The results showed that as the pH value increased, so did the physical stability, but the particle size and TSI of the association decreased. While the fingerprint of chemical profile similarity decreased, so did the chemical stability. Combining physical and chemical stability parameters, an equilibrium point was found out. When the pH value was adjusted to 5.0, both the physical and chemical stabilities were better: the verification test showed that the sedimentation inhibition rates on the 3rd, 5th,10th and15th days were 41%, 55%, 41%, and 23%, respectively. This manuscript provided a new control strategy that will pique pharmaceutical and food development engineers' interest and trigger research ideas controlling the quality of decoction.
Collapse
Affiliation(s)
- Hao-Zhou Huang
- Provincial and State Constructed Key Laboratory Breeding Base of System Research and Development of Chinese Herbal Medicine Resource, Chengdu University of TCM, Chengdu, 611137, PR China
| | - Sheng-Yu Zhao
- Provincial and State Constructed Key Laboratory Breeding Base of System Research and Development of Chinese Herbal Medicine Resource, Chengdu University of TCM, Chengdu, 611137, PR China
| | - Xiu-Mei Ke
- Basic Medical College of Jiujiang University, Jiujiang, 332000, PR China
| | - Jun-Zhi Lin
- Teaching hospital of Chengdu University of TCM, Chengdu, 610075, PR China
| | - Shu-Sen Huang
- University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Run-Chun Xu
- Provincial and State Constructed Key Laboratory Breeding Base of System Research and Development of Chinese Herbal Medicine Resource, Chengdu University of TCM, Chengdu, 611137, PR China
| | - Hong-Yan Ma
- Provincial and State Constructed Key Laboratory Breeding Base of System Research and Development of Chinese Herbal Medicine Resource, Chengdu University of TCM, Chengdu, 611137, PR China
| | - Yi Zhang
- Chengdu Institutes of Food and Drug Control, Chengdu, 610000, PR China
| | - Li Han
- Provincial and State Constructed Key Laboratory Breeding Base of System Research and Development of Chinese Herbal Medicine Resource, Chengdu University of TCM, Chengdu, 611137, PR China.
| | - Ding-Kun Zhang
- Provincial and State Constructed Key Laboratory Breeding Base of System Research and Development of Chinese Herbal Medicine Resource, Chengdu University of TCM, Chengdu, 611137, PR China.
| |
Collapse
|
35
|
Westfall S, Lomis N, Prakash S. A novel polyphenolic prebiotic and probiotic formulation have synergistic effects on the gut microbiota influencing Drosophila melanogaster physiology. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:441-455. [PMID: 29644870 DOI: 10.1080/21691401.2018.1458731] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The gut microbiota is a vast community of synergistic bacterial species providing health benefits to the host. Imbalances in the gut microbiota (dysbiosis) due to diet, antibiotic use, age and stress contribute to disease development including diabetes, obesity, colon cancer, inflammatory bowel disease, inflammaging and neurodegeneration. Fortunately, a probiotic regime with a diet rich in prebiotics may reverse dysbiosis promoting health and wellness in age. The current study designs, optimizes and tests a novel probiotic and synbiotic formulation consisting of three metabolically active probiotics Lactobacillus plantarum, Lactobacillus fermentum and Bifidobacteria infantis together with a novel polyphenol-rich prebiotic, Triphala. The prebiotic action of Triphala was characterized using in vitro batch cultures, Drosophila melanogaster and a simulated model of the human gastrointestinal tract (SHIME) where in each model, Triphala supported growth of beneficial bacteria while inhibiting pathogenic species. Neither Triphala at 0.5% w/v nor the individual probiotics at 5.0 × 108 to 7.5 × 109 CFU/ml demonstrated toxicity in Drosophila. Interestingly, motility was combinatorially enhanced by the probiotic and synbiotic formulations reflecting the beneficial variations in the gut microbiota. Altogether, the present study shows that probiotics and synbiotics in combination are more effective at modulating the gut microbiota and eliciting biological effects than their components.
Collapse
Affiliation(s)
- Susan Westfall
- a Department of Biomedical Engineering, Biomedical and Cell Therapy Research Laboratory , McGill University , Montreal , Canada
| | - Nikita Lomis
- a Department of Biomedical Engineering, Biomedical and Cell Therapy Research Laboratory , McGill University , Montreal , Canada
| | - Satya Prakash
- a Department of Biomedical Engineering, Biomedical and Cell Therapy Research Laboratory , McGill University , Montreal , Canada
| |
Collapse
|
36
|
Affiliation(s)
- Jeffrey M Levine
- Jeffrey M. Levine is an attending physician at Mount Sinai Beth Israel Medical Center and Icahn School of Medicine at Mount Sinai, New York, N.Y
| |
Collapse
|
37
|
Abstract
Aim: The aim of this article is to review the current literature on the therapeutic uses and efficacy of Triphala. Herbal remedies are among the most ancient medicines used in traditional systems of healthcare such as Ayurveda. Triphala, a well-recognized and highly efficacious polyherbal Ayurvedic medicine consisting of fruits of the plant species Emblica officinalis (Amalaki), Terminalia bellerica (Bibhitaki), and Terminalia chebula (Haritaki), is a cornerstone of gastrointestinal and rejuvenative treatment. Methods: A search of the PubMed database was conducted. Results: In addition, numerous additional therapeutic uses described both in the Ayurvedic medical literature and anecdotally are being validated scientifically. In addition to laxative action, Triphala research has found the formula to be potentially effective for several clinical uses such as appetite stimulation, reduction of hyperacidity, antioxidant, anti-inflammatory, immunomodulating, antibacterial, antimutagenic, adaptogenic, hypoglycemic, antineoplastic, chemoprotective, and radioprotective effects, and prevention of dental caries. Polyphenols in Triphala modulate the human gut microbiome and thereby promote the growth of beneficial Bifidobacteria and Lactobacillus while inhibiting the growth of undesirable gut microbes. The bioactivity of Triphala is elicited by gut microbiota to generate a variety of anti-inflammatory compounds. Conclusions: This review summarizes recent data on pharmacological properties and clinical effects of Triphala while highlighting areas in need of additional investigation and clinical development.
Collapse
Affiliation(s)
- Christine Tara Peterson
- 1 Department of Family Medicine and Public Health, UC San Diego School of Medicine, Center of Excellence for Research and Training in Integrative Health , La Jolla, CA.,2 Chopra Foundation , Department of Ayurveda and Yoga Research, Carlsbad, CA
| | - Kate Denniston
- 3 Department of Naturopathic Medicine, Bastyr University , San Diego, CA
| | - Deepak Chopra
- 1 Department of Family Medicine and Public Health, UC San Diego School of Medicine, Center of Excellence for Research and Training in Integrative Health , La Jolla, CA.,2 Chopra Foundation , Department of Ayurveda and Yoga Research, Carlsbad, CA
| |
Collapse
|
38
|
Improved Lipid Profile Associated with Daily Consumption of Tri-Sura-Phon in Healthy Overweight Volunteers: An Open-Label, Randomized Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2687173. [PMID: 28484502 PMCID: PMC5397647 DOI: 10.1155/2017/2687173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
Tri-Sura-Phon (TSP), a traditional Thai polyherbal formula renowned for its rejuvenating properties, is commonly used as a blood tonic. It comprises Cinnamomum bejolghota, Cinnamomum parthenoxylon, and Aquilaria crassna. The aim of this study is to evaluate the beneficial properties of TSP tea consumption on blood glucose regulation and serum lipid profiles of healthy overweight volunteers. This open-label, randomized controlled trial was conducted in 70 healthy overweight adults. Two groups of 35 subjects took a TSP infusion or a placebo (cornstarch) twice daily for 8 weeks. The blood glucose regulation, serum lipid profiles, BMI, and liver function tests of the subjects were determined at the baseline, 4th week, and endpoint (8th week). Significant decreases in the average fasting levels of total cholesterol (p = 0.013), triglyceride (p = 0.001), and low-density lipoprotein (LDL, p = 0.017) were observed in the TSP group at the 8th week compared to those at the baseline. The average HDL level in the TSP group at the beginning of the study was 65.2 mg/dL, and it increased significantly (p = 0.005) to 72.4 mg/dL after 8 weeks of TSP intake. This study showed that the intake of TSP tea as an antioxidant-rich beverage might be safe and improve lipid profiles in overweight adults.
Collapse
|
39
|
|
40
|
Save SN, Choudhary S. Effects of triphala and guggul aqueous extracts on inhibition of protein fibrillation and dissolution of preformed fibrils. RSC Adv 2017. [DOI: 10.1039/c6ra28440j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Herbal preparations such as triphala and guggul aqueous extracts have ability to inhibit protein fibrillation which is known to be an important process responsible for many neurodegenerative and other diseases.
Collapse
Affiliation(s)
- S. N. Save
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Mumbai 400098
- India
| | - S. Choudhary
- UM-DAE Centre for Excellence in Basic Sciences
- University of Mumbai
- Mumbai 400098
- India
| |
Collapse
|
41
|
Jaiswal Y, Liang Z, Zhao Z. Botanical drugs in Ayurveda and Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:245-259. [PMID: 27394388 DOI: 10.1016/j.jep.2016.06.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE China and India have a long history in the therapeutic application of botanical drugs in traditional medicine. Traditional Chinese Medicine (TCM) and Ayurveda are considered as two of the most ancient systems of medicine, with history of more than two millennia. Medicinal plants are the principal medicinal materials used in both these systems. AIM OF THE REVIEW This review discusses about the histories of Ayurveda and TCM, the common medicinal plants species, the drug processing strategies used, and the current statuses of these traditional systems of medicine (TSM). Through the views presented in this article, we aim to provide a new perspective to herbal drug researchers for expanding and improving the utilization of botanical drugs and their therapeutic applications. METHODS A bibliographic investigation of Chinese and Indian pharmacopoeias, monographs and official websites was performed. Furthermore, information was obtained from scientific databases on ethnobotany and ethno medicines. RESULTS The review of Ayurveda and TCM ethno medicine indicates that both these systems have many medicinal materials in common. The studies carried out by the authors for comparison of plants from same genus from both these TSM's have been discussed to further bring focus to the utilization of "qualitatively" similar species which can be utilized and substituted for endangered or economically valued species. The overview of ancient literature and scientific findings for drugs in both these systems suggests that, the botanical drugs used in common and their processing methods can be explored further for extensive utilization in traditional medicine. CONCLUSION This review describes the histories, common medicinal plant species, their processing methods and therapeutic applications in Ayurveda and TCM. The insights provided through this article may be used by herbal drug researchers and pharmacologists for further exploration of botanical drugs from these two traditional systems of medicine.
Collapse
Affiliation(s)
- Yogini Jaiswal
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, PR China
| | - Zhitao Liang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, PR China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
42
|
Abstract
Traditional Indian medicine (ayurveda) is becoming increasingly popular, with many chronic conditions responding to it well. Most patients begin to take conventional medications as soon as their diagnoses are made, so ayurvedic treatments are usually undergone alongside and/or after conventional medical approaches. A detailed knowledge of the action of food, spices, and medicinal plants is needed in order to understand their potential influence fully. While societal use of ayurvedic plants and Indian spices is commonplace, without ill effect, the use of more concentrated products made from single plants, often in the form of teas or tablets, is of more concern. The mechanisms by which polyherbal drugs and their extracts act differ in many respects from the actions of single substances or synthetic drugs. Despite the fact that ayurvedic medicines are based on natural herbal materials, their safety depends on their method of administration, taking into account individuals’ needs and their specific disease conditions.
Collapse
Affiliation(s)
- Syal Kumar
- 1 University of Duisburg-Essen, Essen, Germany
| | | | | |
Collapse
|
43
|
Takauji Y, Miki K, Mita J, Hossain MN, Yamauchi M, Kioi M, Ayusawa D, Fujii M. Triphala, a formulation of traditional Ayurvedic medicine, shows protective effect against X-radiation in HeLa cells. J Biosci 2016; 41:569-575. [DOI: 10.1007/s12038-016-9639-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Amelioration of gastric ulcers using a hydro-alcoholic extract of Triphala in indomethacin-induced Wistar rats. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2016.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Tripathi RK, Bolegave SS, Shetty PA, Uchil DA, Rege NN, Chawda MB, Rege SA. Efficacy and safety of a polyherbal formulation in hemorrhoids. J Ayurveda Integr Med 2016; 6:225-32. [PMID: 26834421 PMCID: PMC4719482 DOI: 10.4103/0975-9476.172382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The medical management of hemorrhoids should include an integrated approach. This integrated approach can be achieved by polyherbal formulations containing anti-inflammatory, styptics, analgesics, and laxative effect which reduce inflammation, pain, and bleeding, and increase gastro-intestinal motility and soften stools. One such polyherbal kit is “Arshkeyt™, a 7 day kit,” which consists of oral tablets and powder along with topical cream. Objective: Efficacy and safety of Arshkeyt™, a 7 day kit, a marketed polyherbal formulation was evaluated in comparison with conventional therapy practiced in surgery outpatient departments. Materials and Methods: Patients (n = 90) with hemorrhoids were randomly allocated to receive either Arshkeyt™ or standard therapy (combination of oral Isabgul powder and 2% lidocaine gel) for 14 days. Assessment on the basis of rectal symptoms and proctoscopic examination was done on day 0, 7, and 14 to derive a “composite score” which ranged from 0 to 25 by a blinded evaluator. The primary endpoint was number of patients achieving composite score 0 at the end of therapy (day 14). Inter-group analysis was done using Chi-square test. Results: On day 14, the composite score of 0 was achieved in 15 patients of Arshkeyt™ group versus 6 patients receiving standard therapy. The symptoms and signs which showed significant improvement in Arshkeyt™ group compared to standard treatment group were the tenesmus (visual analog score) score (P = 0.047), anal sphincter spasm (P = 0.0495) and a decrease in the grade of hemorrhoids (P = 0.0205) on day 14. Arshkeyt™ was also more beneficial in case of bleeding hemorrhoids as compared to nonbleeding hemorrhoids (P < 0.05). The incidence of adverse drug reactions in both groups was comparable and no patient required any treatment for the same. Conclusion: “Arshkeyt™, a 7 day kit,” was effective in the treatment of hemorrhoids and had a good safety profile.
Collapse
Affiliation(s)
- Raakhi K Tripathi
- Department of Clinical Pharmacology and Therapeutics, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Somesh S Bolegave
- Department of Clinical Pharmacology and Therapeutics, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Parvan A Shetty
- Department of Clinical Pharmacology and Therapeutics, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Dinesh A Uchil
- Department of Clinical Pharmacology and Therapeutics, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Nirmala N Rege
- Department of Clinical Pharmacology and Therapeutics, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Mukesh B Chawda
- Senior Manager, Medical Services, Solumiks Herbaceuticals Limited, Mumbai, Maharashtra, India
| | - Sameer A Rege
- Department of General Surgery, Seth G.S. Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
46
|
Protective Effects of Triphala on Dermal Fibroblasts and Human Keratinocytes. PLoS One 2016; 11:e0145921. [PMID: 26731545 PMCID: PMC4711708 DOI: 10.1371/journal.pone.0145921] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/10/2015] [Indexed: 12/23/2022] Open
Abstract
Human skin is body’s vital organ constantly exposed to abiotic oxidative stress. This can have deleterious effects on skin such as darkening, skin damage, and aging. Plant-derived products having skin-protective effects are well-known traditionally. Triphala, a formulation of three fruit products, is one of the most important rasayana drugs used in Ayurveda. Several skin care products based on Triphala are available that claim its protective effects on facial skin. However, the skin protective effects of Triphala extract (TE) and its mechanistic action on skin cells have not been elucidated in vitro. Gallic acid, ellagic acid, and chebulinic acid were deduced by LC-MS as the major constituents of TE. The identified key compounds were docked with skin-related proteins to predict their binding affinity. The IC50 values for TE on human dermal fibroblasts (HDF) and human keratinocytes (HaCaT) were 204.90 ± 7.6 and 239.13 ± 4.3 μg/mL respectively. The antioxidant capacity of TE was 481.33 ± 1.5 mM Trolox equivalents in HaCaT cells. Triphala extract inhibited hydrogen peroxide (H2O2) induced RBC haemolysis (IC50 64.95 μg/mL), nitric oxide production by 48.62 ± 2.2%, and showed high reducing power activity. TE also rescued HDF from H2O2-induced damage; inhibited H2O2 induced cellular senescence and protected HDF from DNA damage. TE increased collagen-I, involucrin and filaggrin synthesis by 70.72 ± 2.3%, 67.61 ± 2.1% and 51.91 ± 3.5% in HDF or HaCaT cells respectively. TE also exhibited anti-tyrosinase and melanin inhibition properties in a dose-dependent manner. TE increased the mRNA expression of collagen-I, elastin, superoxide dismutase (SOD-2), aquaporin-3 (AQP-3), filaggrin, involucrin, transglutaminase in HDF or HaCaT cells, and decreased the mRNA levels of tyrosinase in B16F10 cells. Thus, Triphala exhibits protective benefits on skin cells in vitro and can be used as a potential ingredient in skin care formulations.
Collapse
|
47
|
Olennikov DN, Kashchenko NI, Chirikova NK. In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: A Case of Padma Hepaten® Formulation. Nutrients 2015; 7:8456-77. [PMID: 26473917 PMCID: PMC4632426 DOI: 10.3390/nu7105406] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Chebulic ellagitannins (ChET) are plant-derived polyphenols containing chebulic acid subunits, possessing a wide spectrum of biological activities that might contribute to health benefits in humans. The herbal formulation Padma Hepaten containing ChETs as the main phenolics, is used as a hepatoprotective remedy. In the present study, an in vitro dynamic model simulating gastrointestinal digestion, including dialysability, was applied to estimate the bioaccessibility of the main phenolics of Padma Hepaten. Results indicated that phenolic release was mainly achieved during the gastric phase (recovery 59.38%-97.04%), with a slight further release during intestinal digestion. Dialysis experiments showed that dialysable phenolics were 64.11% and 22.93%-26.05% of their native concentrations, respectively, for gallic acid/simple gallate esters and ellagitanins/ellagic acid, in contrast to 20.67% and 28.37%-55.35% for the same groups in the non-dialyzed part of the intestinal media. Investigation of human gut microbiota metabolites of Padma Hepaten and pure ChETs (chebulinic, chebulagic acids) established the formation of bioactive urolithins (A, B, C, D, M5). The fact of urolithin formation during microbial transformation from ChETs and ChET-containing plant material was revealed for the first time. Evaluation of the protective effect of ChETs colonic metabolites and urolithins on tert-butyl hydroperoxide (t-BHP)-induced oxidative injury in cultured rat primary hepatocytes demonstrated their significant reversion of the t-BHP-induced cell cytotoxicity, malonic dialdehyde production and lactate dehydrogenase leakage. The most potent compound was urolithin C with close values of hepatoprotection to gallic acid. The data obtained indicate that in the case of Padma Hepaten, we speculate that urolithins have the potential to play a role in the hepatic prevention against oxidative damage.
Collapse
Affiliation(s)
- Daniil N Olennikov
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh'yanovoy Street 6, Ulan-Ude 670-047, Russia.
| | - Nina I Kashchenko
- Laboratory of Medical and Biological Research, Institute of General and Experimental Biology, Siberian Division, Russian Academy of Science, Sakh'yanovoy Street 6, Ulan-Ude 670-047, Russia.
| | - Nadezhda K Chirikova
- Department of Biochemistry and Biotechnology, North-Eastern Federal University, 58 Belinsky Street, Yakutsk 677-027, Russian.
| |
Collapse
|
48
|
Justin Thenmozhi A, Dhivyabharathi M, William Raja TR, Manivasagam T, Essa MM. Tannoid principles of Emblica officinalis renovate cognitive deficits and attenuate amyloid pathologies against aluminum chloride induced rat model of Alzheimer's disease. Nutr Neurosci 2015; 19:269-78. [PMID: 25842984 DOI: 10.1179/1476830515y.0000000016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIMS Emblica officinalis is mentioned as a maharasayana in many Ayurvedic texts and promotes intelligence, memory, freedom from disease, longevity, and strength of the senses. The present study has been designed to explore the memory-enhancing effect of the tannoid principles of E. officinalis (EoT) at the biochemical, anatomical, behavioral, and molecular levels against aluminum chloride (AlCl3) induced Alzheimer's disease (AD) in rats. Aluminum is reported to have an important role in the etiology, pathogenesis, and development of AD. METHODS Male Wistar rats were divided into control, AlCl3 treated, AlCl3 and EoT (50, 100, and 200 mg/kg bw) co-treated, and EoT (200 mg/kg bw) alone treated groups. In control and experimental rats, behavior tests including water maze and open field test, estimation of aluminum, assay of acetylcholinesterase (AChE) activity, and expression of amyloidogenic proteins were performed. RESULTS Intraperitonial injection of AlCl3 (100 mg/kg bw) for 60 days significantly elevated the concentration of aluminum (Al), activity of AChE and protein expressions of amyloid precursor protein, A-beta1-42, beta-, and gamma-secretases as compared to control group in hippocampus and cortex. Co-administration of EoT orally to AlCl3 rats for 60 days significantly revert back the Al concentration, AChE activity, and A-beta synthesis-related molecules in the studied brain regions. The spatial learning, memory, and locomotor impairments observed in AlCl3 treated rats were significantly attenuated by EoT. CONCLUSION Therefore, EoT may be a promising therapy in ameliorating neurotoxicity of aluminum, however further studies are warranted to elucidate the exact mechanism of action of EoT.
Collapse
Affiliation(s)
- Arokiasamy Justin Thenmozhi
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalai Nagar, Tamilnadu 608 002 , India
| | - Mathiyazahan Dhivyabharathi
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalai Nagar, Tamilnadu 608 002 , India
| | - Tharsius Raja William Raja
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalai Nagar, Tamilnadu 608 002 , India
| | - Thamilarasan Manivasagam
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalai Nagar, Tamilnadu 608 002 , India
| | - Musthafa Mohamed Essa
- b Department of Food Science and Nutrition , CAMS, Sultan Qaboos University , Muscat , Oman.,c Ageing and Dementia Research Group, Sultan Qaboos University , Muscat , Oman
| |
Collapse
|
49
|
Aqueous and alcoholic extracts of Triphala and their active compounds chebulagic acid and chebulinic acid prevented epithelial to mesenchymal transition in retinal pigment epithelial cells, by inhibiting SMAD-3 phosphorylation. PLoS One 2015; 10:e0120512. [PMID: 25793924 PMCID: PMC4368423 DOI: 10.1371/journal.pone.0120512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 02/06/2015] [Indexed: 11/24/2022] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) of the retinal pigment epithelium is involved in the pathogenesis of proliferative vitreoretinopathy (PVR) that often leads to retinal detachment. In this study, Triphala, an ayurvedic formulation and two of its active ingredients, namely chebulagic acid and chebulinic acid were evaluated for anti-EMT properties based on in vitro experiments in human retinal pigment epithelial cell line (ARPE-19) under TGFβ1 induced conditions. ARPE-19 cells were treated with TGFβ1 alone or co-treated with various concentrations of aqueous extract (AqE) (30 - 300 μg/ml); alcoholic extract (AlE) (50 - 500 μg/ml) of triphala and the active principles chebulagic acid (CA) and chebulinic acid (CI) (CA,CI: 50 - 200 μM). The expression of EMT markers namely MMP-2, αSMA, vimentin and the tight junction protein ZO-1 were evaluated by qPCR, western blot and immunofluorescence. The functional implications of EMT, namely migration and proliferation of cells were assessed by proliferation assay, scratch assay and transwell migration assay. AqE, AlE, CA and CI reduced the expression and activity of MMP-2 at an ED50 value of 100 μg/ml, 50 μg/ml, 100 μM and 100 μM, respectively. At these concentrations, a significant down-regulation of the expression of αSMA, vimentin and up-regulation of the expression of ZO-1 altered by TGFβ1 were observed. These concentrations also inhibited proliferation and migration of ARPE-19 cells induced by TGFβ1. EMT was found to be induced in ARPE-19 cells, through SMAD-3 phosphorylation and it was inhibited by AqE, AlE, CA and CI. Further studies in experimental animals are required to attribute therapeutic potential of these extracts and their active compounds, as an adjuvant therapy in the disease management of PVR.
Collapse
|
50
|
Gaire BP, Subedi L. Phytochemistry, pharmacology and medicinal properties of Phyllanthus emblica Linn. Chin J Integr Med 2014. [PMID: 25491539 DOI: 10.1007/s11655-014-1984-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 02/01/2023]
Abstract
Phyllanthus emblica L. (syn. Emblica officinalis) is commonly known as Indian gooseberry. In Ayurveda, P. emblica has been extensively used, both as edible (tonic) plants and for its therapeutic potentials. P. emblica is highly nutritious and is reported as an important dietary source of vitamin C, minerals and amino acids. All parts of the plant are used for medicinal purposes, especially the fruit, which has been used in Ayurveda as a potent Rasayana (rejuvenator). P. emblica contains phytochemicals including fixed oils, phosphatides, essential oils, tannins, minerals, vitamins, amino acids, fatty acids, glycosides, etc. Various pharmaceutical potential of P. emblica has been reported previously including antimicrobial, antioxidant, anti-inflammatory, analgesic and antipyretic, adaptogenic, hepatoprotective, antitumor and antiulcerogenic activities either in combined formulation or P. emblica alone. The various other Ayurvedic potentials of P. emblica are yet to be proven scientifically in order to explore its broad spectrum of therapeutic effects. On this regards we, in this review, tried to explore the complete information of P. emblica including its pharmacognosy, phytochemistry and pharmacology.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Pharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 406-799, Republic of Korea
| | | |
Collapse
|