1
|
Mi A, Hu Q, Liu Y, Zhao Y, Shen F, Lan J, Lv K, Wang B, Gao R, Yu X. Hepatoprotective efficacy and interventional mechanism of the panaxadiol saponin component in high-fat diet-induced NAFLD mice. Food Funct 2024; 15:794-808. [PMID: 38131276 DOI: 10.1039/d3fo03572g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dietary administration is a promising strategy for intervention in non-alcoholic fatty liver disease (NAFLD). Our research team has identified a biologically active component, the panaxadiol saponin component (PDS-C) isolated from total saponins of panax ginseng, which has various pharmacological and therapeutic functions. However, the efficacy and mechanism of PDS-C in NAFLD were unclear. This study aimed to elucidate the hepatoprotective effects and underlying action mechanism of PDS-C in NAFLD. Mice were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD and treated with PDS-C and metformin as the positive control for 12 weeks. PDS-C significantly alleviated liver function, hepatic steatosis and blood lipid levels, reduced oxidative stress and inflammation in NAFLD mice. In vitro, PDS-C has been shown to reduce lipotoxicity and ROS levels while enhancing the antioxidant and anti-inflammatory capabilities in HepG2 cells induced by palmitic acid. PDS-C induced AMPK phosphorylation, leading to upregulation of the Nrf2/HO1 pathway expression and downregulation of the NFκB protein level. Furthermore, our observations indicate that PDS-C supplementation improves insulin resistance and glucose homeostasis in NAFLD mice, although its efficacy is not as pronounced as metformin. In conclusion, these results demonstrate the hepatoprotective efficacy of PDS-C in NAFLD and provide potential opportunities for developing functional products containing PDS-C.
Collapse
Affiliation(s)
- Ai Mi
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Qinxue Hu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ying Liu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yanna Zhao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Fenglin Shen
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jinjian Lan
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Keren Lv
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Bolin Wang
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ruilan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaoling Yu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Liu W, Tan Z, Zhao Y, Zhao Y, Yu X, Wang B, Shen F, Mi A, Lan J, Gao R. Panaxadiol saponin ameliorates ferroptosis in iron-overload aplastic anemia mice and Meg-01 cells by activating Nrf2/HO-1 and PI3K/AKT/mTOR signaling pathway. Int Immunopharmacol 2023; 118:110131. [PMID: 37023700 DOI: 10.1016/j.intimp.2023.110131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Panaxadiol saponin (PND) is a latent targeted drug for the treatment of aplastic anemia (AA). In this study, we examined the effects of PND on ferroptosis in iron-overload AA and Meg-01 cells. We utilized RNA-seq to analyze differentially expressed genes in iron-induced Meg-01 cells treated with PND. The effects of PND or combined with deferasirox (DFS) on iron deposition, labile iron pool (LIP), several ferroptosis events, apoptosis, mitochondrial structure, as well as ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR pathway-related markers in iron-induced Meg-01 cells were examined by Prussian-blue staining, flow cytometer, ELISA, Hoechst 33342 staining, transmission electron microscope, and Western blot assays, respectively. Additionally, an AA mice model with iron overload was established. Then, the blood routine was assessed, and the number of bone marrow-derived mononuclear cells (BMMNCs) in mice was counted. Also, serum iron, ferroptosis events, apoptosis, histology, T lymphocyte percentage, ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR signaling-related targets in primary megakaryocytes of AA mice with iron overload were assessed by commercial kits, TUNEL staining, hematoxylin and eosin (H&E) staining, Prussian blue staining, flow cytometer, and qRT-PCR analysis, respectively. PND suppressed iron-triggered iron overload, and apoptosis, and ameliorated mitochondrial morphology in Meg-01 cells. Importantly, PND ameliorated ferroptosis-, Nrf2/HO-1-, and PI3K/AKT/mTOR signaling-related marker expressions in iron-induced Meg-01 cells or primary megakaryocytes of AA mice with iron overload. Moreover, PND ameliorated body weight, peripheral blood cell counts, the number of BMMNCs, and histological injury in the iron-overload AA mice. Also, PND improved the percentage of T lymphocytes in the iron-overload AA mice. PND attenuates ferroptosis against iron-overload AA mice and Meg-01 cells via activating Nrf2/HO-1 and PI3K/AKT/mTOR pathway and is a promising novel therapeutic candidate for AA.
Collapse
Affiliation(s)
- WenBin Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhengWei Tan
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - YueChao Zhao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - YanNa Zhao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - XiaoLing Yu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - BoLin Wang
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - FengLin Shen
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ai Mi
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - JinJian Lan
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - RuiLan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
The Application of Ethnomedicine in Modulating Megakaryocyte Differentiation and Platelet Counts. Int J Mol Sci 2023; 24:ijms24043168. [PMID: 36834579 PMCID: PMC9961075 DOI: 10.3390/ijms24043168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Megakaryocytes (MKs), a kind of functional hematopoietic stem cell, form platelets to maintain platelet balance through cell differentiation and maturation. In recent years, the incidence of blood diseases such as thrombocytopenia has increased, but these diseases cannot be fundamentally solved. The platelets produced by MKs can treat thrombocytopenia-associated diseases in the body, and myeloid differentiation induced by MKs has the potential to improve myelosuppression and erythroleukemia. Currently, ethnomedicine is extensively used in the clinical treatment of blood diseases, and the recent literature has reported that many phytomedicines can improve the disease status through MK differentiation. This paper reviewed the effects of botanical drugs on megakaryocytic differentiation covering the period 1994-2022, and information was obtained from PubMed, Web of Science and Google Scholar. In conclusions, we summarized the role and molecular mechanism of many typical botanical drugs in promoting megakaryocyte differentiation in vivo, providing evidence as much as possible for botanical drugs treating thrombocytopenia and other related diseases in the future.
Collapse
|
4
|
Yuan JJ, Lu Y, Cao JJ, Pei RZ, Gao RL. Hematopoiesis reconstitution and anti-tumor effectiveness of Pai-Neng-Da capsule in acute leukemia patients with haploidentical hematopoietic stem cell transplantation. World J Clin Cases 2022; 10:4425-4435. [PMID: 35663068 PMCID: PMC9125279 DOI: 10.12998/wjcc.v10.i14.4425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/26/2021] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND With the rapid development of haploidentical hematopoietic stem cell transplantation (haplo-HSCT), primary poor graft function (PGF) has become a life-threatening complication. Effective therapies for PGF are inconclusive. New Chinese patent medicine Pai-Neng-Da (PND) Capsule exerts dual effect in promoting hematopoiesis recovery and regulating immunity. Still, the application of PND capsule in hematopoietic stem cell transplantation, especially in the haplo-HSCT setting, has not yet been reported.
AIM To evaluate the role of PND capsule in acute leukemia patients with haplo-HSCT.
METHODS We retrospectively collected data of acute leukemia patients who underwent haplo-HSCT at the Affiliated People’s Hospital of Ningbo University between April 1, 2015 and June 30, 2020. Twenty-nine consecutive patients received oral PND capsule from the sixth day to the first month after haplo-HSCT were included in the PND group. In addition, 31 patients who did not receive PND capsule during haplo-HSCT were included in the non-PND group. Subsequently, we compared the therapeutic efficacy according to the western medical evaluation indexes and Chinese medical symptom scores, and the survival between the PND group and the non-PND group, using the chi-square test, Fisher’s exact test, and the Kaplan–Meier method.
RESULTS The duration of platelet engraftment was shorter in the PND group than in the non-PND group (P = 0.039). The PND group received a lower frequency of red blood cells and platelet transfusions than the non-PND group (P = 0.033 and P = 0.035, respectively). In addition, PND capsule marginally reduced the rate of PGF (P = 0.027) and relapse (P = 0.043). After 33 (range, 4-106) months of follow-up, the 3-year relapse-free survival (P = 0.046) and progression-free survival (P = 0.049) were improved in the PND group than in the non-PND group. Also, the therapeutic efficacy of the PND group according to Chinese medical symptom scores was significantly better than that of the non-PND group (P = 0.022). Moreover, the adverse events caused by PND capsule were mild. Nevertheless, there were no significant differences in the duration of neutrophil engraftment, the risk of infection within 100 days after haplo-HSCT, the acute graft-versus-host disease, or the 3-year overall survival between the two groups.
CONCLUSION PND capsule could promote hematopoiesis reconstitution, improve the therapeutic efficacy of Chinese medical symptom scores, present anti-tumor effectiveness, and prolong the survival of acute leukemia patients with haplo-HSCT.
Collapse
Affiliation(s)
- Jiao-Jiao Yuan
- Department of Hematology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Ying Lu
- Department of Hematology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Jun-Jie Cao
- Department of Hematology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Ren-Zhi Pei
- Department of Hematology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Rui-Lan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hang Zhou 310006, Zhejiang Province, China
| |
Collapse
|
5
|
Jiang ZY, Yu FQ, Gao RL, Kuang YM, Zhu Y, Chen YH, Li LJ, Ouyang GF, Hu J, Wu XL. Treatment of Chronic Aplastic Anemia with Chinese Patent Medicine Pai-Neng-Da Capsule () for Replacing Androgen Partially: A Clinical Multi-Center Study. Chin J Integr Med 2021; 28:20-27. [PMID: 33837482 DOI: 10.1007/s11655-021-3283-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the efficacy and safety of Pai-Neng-Da Capsule (, panaxadiol saponins component, PNDC) in combination with the cyclosporine and androgen for patients with chronic aplastic anemia (CAA). METHODS A total of 79 CAA patients was randomly divided into 2 groups by a random number table, including PCA group [43 cases, orally PNDC 320 mg/d plus cyclosporine 5 mg/(kg·d) plus andriol 80 mg/d] and CA group [36 cases, orally cyclosporine 5 mg/(kg·d) plus andriol 160 mg/d]. All patients were treated and followed-up for 6 treatment courses over 24 weeks. The complete blood counts, score of Chinese medical (CM) symptoms were assessed and urine routine, electrocardiogram, hepatic and renal function were observed for safety evaluation. Female masculinization rating scale was established according to the actual clinical manifestations to evaluate the accurate degree of masculinization in female CAA patients treated by andriol. RESULTS The effective rates were 88.1% (37/42) in the PCA group and 77.8% (28/36) in the CA group based on the standard for the therapeutic efficacy evaluation of hematopathy. There was no significant difference in the white blood cell (WBC) counts, platelet counts and hemoglobin concentration of peripheral blood between two groups after 6 months treatment. The masculinization score of female patient in the PCA group was significantly lower than the CA group (P<0.05). The mild abdominal distention was observed in 1 cases in the PCA group. In CA group, the abnormalities in the hepatic function developed in 2 cases and the renal disfunction was found in 1 case. CONCLUSION The PNDC possesses certain curative effects in the treatment of CAA without obvious side-effects and can partially replace andriol thereby to reduce the degree of masculinization [Registried at Chinese Clinical Trial Registry (ChicTR1900028153)].
Collapse
Affiliation(s)
- Zhi-Yong Jiang
- Department of Hematology, Jinhua People's Hospital, Jinhua, Zhejiang Province, 321000, China
| | - Fang-Quan Yu
- Department of Hematology, Jinhua People's Hospital, Jinhua, Zhejiang Province, 321000, China
| | - Rui-Lan Gao
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| | - Yue-Min Kuang
- Department of Hematology, Jinhua People's Hospital, Jinhua, Zhejiang Province, 321000, China
| | - Yan Zhu
- Department of Hematology, Jinhua People's Hospital, Jinhua, Zhejiang Province, 321000, China
| | - Yue-Hua Chen
- Department of Hematology, the Second of Shaoxing Hospital, Shaoxing, Zhejiang Province, 312000, China
| | - Lin-Jie Li
- Department of Hematology, Lishui Central Hospital, Lishui, Zhejiang Province, 323000, China
| | - Gui-Fang Ouyang
- Department of Hematology, First Hospital of Ningbo, Ningbo, Zhejiang Province, 315010, China
| | - Jing Hu
- Department of Clinical Medicine, Medical College, Jinhua Polytechnic, Jinhua, Zhejiang Province, 321000, China
| | - Xiao-Long Wu
- Institute of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| |
Collapse
|
6
|
He M, Wang N, Zheng W, Cai X, Qi D, Zhang Y, Han C. Ameliorative effects of ginsenosides on myelosuppression induced by chemotherapy or radiotherapy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113581. [PMID: 33189841 DOI: 10.1016/j.jep.2020.113581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/17/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND and ethnopharmacological relevance: As the major side effect of radiotherapy or chemotherapy, myelosuppression usually leads to anemia, hemorrhage, immunosuppression, and even fatal infections, which may discontinue the process of cancer treatment. As a result, more and more attention is paid to the treatment of myelosuppression. Ginseng, root of Panax ginseng Meyer (Panax ginseng C. A. Mey), is considered as the king of herbs in the Orient, particularly in China, Korea and Japan. Ginsenosides, the most important active ingredients of ginseng, have been shown to have a variety of therapeutic effects, such as neuroprotective, anti-cancer and anti-diabetic properties. Considering that ginsenosides are closely associated with the pathogenesis of myelosuppression, researchers have carried out a few experiments on ginsenosides to attenuate myelosuppression induced by chemotherapy or radiotherapy in recent years. AIM OF THE STUDY To summarize previous studies about the effects of ginsenosides on alleviating myelosuppression and the mechanisms of action. METHODS Literatures in this review were searched in PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, and ScienceDirect. RESULTS Ginsenosides play an important role in relieving myelosuppression predominantly by restoring hematopoiesis and immunity. CONCLUSION Ginsenosides might be potential candidates for the treatment of myelosuppression induced by chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Mengjiao He
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Na Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Wenxiu Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, PR China.
| |
Collapse
|
7
|
Chen J, Wang W, Jiang M, Yang M, Wei W. Combination therapy of ginsenoside compound K and methotrexate was efficient in elimination of anaemia and reduction of disease activity in adjuvant-induced arthritis rats. PHARMACEUTICAL BIOLOGY 2020; 58:1131-1139. [PMID: 33198544 PMCID: PMC7671656 DOI: 10.1080/13880209.2020.1844761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CONTEXT Ginsenoside compound K (CK) has anti-inflammatory, immunoregulatory, and myelosuppressive protective effects. Methotrexate (MTX) is widely used in combination therapy for rheumatoid arthritis (RA). OBJECTIVE To evaluate the effects of combination therapy of CK and MTX on anaemia and anti-arthritis in adjuvant-induced arthritis (AA) rats. MATERIALS AND METHODS AA was induced in rats by Complete Freund's adjuvant, and divided into five groups (n = 10): normal, AA, CK 80 mg/kg, combination therapy (80 mg/kg CK combined with 0.5 mg/kg MTX), and MTX 0.5 mg/kg. From day 12, CK (once a day for 15 days) or MTX (once every 3 days, five times) were intragastrically administered. RESULTS Combination therapy showed increased haemoglobin to 148.5 ± 10.1 g/L compared with AA (129.8 ± 11.7 g/L) and MTX (128.8 ± 18.4 g/L), and decreased reticulocytes in peripheral blood to 4.9 ± 1.1% compared with MTX (9.3 ± 3.3%). In combination therapy group, paw swelling decreased to 5.6 ± 4.3 mL compared with CK (9.4 ± 3.9 mL) and MTX (13.5 ± 7.4 mL), and swollen joint count decreased to 1.4 ± 0.8 compared with CK (2.1 ± 1.0) and MTX (2.4 ± 1.2) at day 24. Combination therapy showed decreased IL-6 to 25.1 ± 17.2 pg/mL compared with MTX (44.9 ± 4.8 pg/mL), and decreased IL-17 to 5.8 ± 3.9 pg/mL compared with MTX (10.7 ± 4.2 pg/mL). CONCLUSION The anti-anaemia effect of CK deserves further study, and CK can be a candidate effective drug for combined treatment in RA with anaemia.
Collapse
Affiliation(s)
- Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
- Jingyu Chen Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wu Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Mengya Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Mei Yang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, China
- CONTACT Wei Wei
| |
Collapse
|
8
|
Zheng ZY, Yu XL, Dai TY, Yin LM, Zhao YN, Xu M, Zhuang HF, Chong BH, Gao RL. Panaxdiol Saponins Component Promotes Hematopoiesis and Modulates T Lymphocyte Dysregulation in Aplastic Anemia Model Mice. Chin J Integr Med 2019; 25:902-910. [PMID: 31802424 DOI: 10.1007/s11655-019-3049-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the potential efficacy of panaxadiol saponins component (PDS-C) in the treatment of aplastic anemia (AA) model mice. METHODS Totally 70 mice were divided into 7 groups as follows: normal, model, low-, medium-, high-dose PDS-C (20, 40, 80 mg/kg, namely L-, M-, H-PDS-C), cyclosporine (40 mg/kg), and andriol (25 mg/kg) groups, respectively. An immune-mediated AA mouse model was established in BALB/c mice by exposing to 5.0 Gy total body irradiation at 1.0 Gy/min, and injecting with lymphocytes from DBA mice. On day 4 after establishment of AA model, all drugs were intragastrically administered daily for 15 days, respectively, while the mice in the normal and model groups were administered with saline solution. After treatment, the peripheral blood counts, bone marrow pathological examination, colony forming assay of bone marrow culture, T lymphocyte subpopulation analysis, as well as T-bet, GATA-3 and FoxP3 proteins were detected by flow cytometry and Western blot. RESULTS The peripheral blood of white blood cell (WBC), platelet, neutrophil counts and hemoglobin (Hb) concentration were significantly decreased in the model group compared with the normal group (all P<0.01). In response to 3 dose PDS-C treatment, the WBC, platelet, neutrophil counts were significantly increased at a dose-dependent manner compared with the model group (all P<0.01). The myelosuppression status of AA was significantly reduced in M-, H-PDS-C groups, and hematopoietic cell quantity of bone marrow was more abundant than the model group. The colony numbers of myeloid, erythroid and megakaryocytic progenitor cells in the model group were less than those of the normal mice in bone marrow culture, while, PDS-C therapy enhanced proliferation of hematopoietic progenitor cells by significantly increasing colony numbers (all P<0.01). Furthermore, PDS-C therapy increased peripheral blood CD3+ and CD3+CD4+ cells and reduced CD3+CD8+ cells (P<0.05 or P<0.01). Meanwhile, PDS-C treatment at medium- and high doses groups also increased CD4+CD25+FoxP3+ cells, downregulated T-bet protein expression, and upregulated GATA-3 and FoxP3 protein expressions in spleen cells (P<0.05). CONCLUSION PDS-C possesses dual activities, promoting proliferation hematopoietic progenitor cells and modulating T lymphocyte immune functions in the treatment of AA model mice.
Collapse
Affiliation(s)
- Zhi-Yin Zheng
- Institution of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xiao-Ling Yu
- Institution of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Tie-Ying Dai
- Institution of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Li-Ming Yin
- Institution of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Yan-Na Zhao
- Institution of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Min Xu
- Institution of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Hai-Feng Zhuang
- Institution of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Beng Hock Chong
- Department of Hematology, St George Hospital, St George Clinical School, University of New South Wales, Kogarah, NSW, 2217, Australia
| | - Rui-Lan Gao
- Institution of Hematology Research, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
9
|
Liu WB, Li S, Yu XL, Dai TY, Gao RL. Research Progress on Chinese Medicine Immunomodulatory Intervention for Chronic Primary Immune Thrombocytopenia: Targeting Cellular Immunity. Chin J Integr Med 2019; 25:483-489. [PMID: 31278626 DOI: 10.1007/s11655-019-3031-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 11/25/2022]
Abstract
Chronic primary immune thrombocytopenia (CITP) is the most common acquired autoimmune disease that seriously threaten the physical and mental health of patients. Compared with Western medicine treatment, the intervention and treatment of Chinese medicine (CM) has shown certain therapeutic advantages. This paper reviewed the new pathogenesis progress on T cell immune abnormality in CITP, and CM studies on interferes effects of cellular immune regulation of CITP in recent years. Qi deficiency failing to control blood and internal obstruction of blood stasis are the two common types of CM syndromes in CITP patients, the corresponding treatments include invigorating Pi (Spleen), supplementing qi, activating blood, as well as tonifying qi and activating yang, regulating Gan (Liver) to invigorate Pi. The authors also mentioned the problems in the research field of CM for CTIP treatment, and put forward new ideas for the research in the future.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Sai Li
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Xiao-Ling Yu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Tie-Ying Dai
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Rui-Lan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| |
Collapse
|
10
|
Zhao Y, Liu H, Xu L, Guo B, Kalvakolanu DV, Liu X, Hu J, Zhang D, Sun Y, Zhang L, Xu D, Zhao X. Synergistic Suppression of Melanoma Growth by a Combination of Natural dsRNA and Panaxadiolsaponins. J Interferon Cytokine Res 2018; 38:378-387. [PMID: 30230984 DOI: 10.1089/jir.2018.0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Melanoma is one of the most lethal skin malignancies in the world. Interferons (IFNs) have been also demonstrated in response to tumor cell and IFNs such as IFN-α have been used for melanoma treatment. The long chain double-stranded RNA (dsRNA) (from a variety of nonviral sources) is a potent activator of the IFN system and an inducer of cell apoptosis. Panaxadiolsaponins (PDS) is a major Panax ginseng-derived active component with known antitumor activity and immune modulation. Here, we investigated a hypothesis that the combination of PDS and total natural dsRNA (as opposed to the synthetic dsRNA) will suppress tumor growth better than the individual agents. We have evaluated the antitumor and immunostimulatory effects of the combination of natural long chain dsRNA (derived from yeast) and PDS on melanoma cell line B16 and mice xenograft model. The underlying mechanisms of growth suppression were investigated by analyzing dsRNA-activated pathways, apoptosis, and cell cycle. Natural dsRNA and PDS exert superior anticancer effects than either agent alone. Natural dsRNA and PDS combination might be a promising strategy for treating malignancies, including melanoma.
Collapse
Affiliation(s)
- Yanying Zhao
- 1 Department of Pathophysiology, College of Basic Medicine Sciences, Jilin University , Changchun, P.R. China .,2 Department of Gastroenterology, The Fourth Hospital of Jilin University, Changchun, P.R. China
| | - Haipeng Liu
- 3 Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, P.R. China
| | - Libo Xu
- 1 Department of Pathophysiology, College of Basic Medicine Sciences, Jilin University , Changchun, P.R. China
| | - Baofeng Guo
- 1 Department of Pathophysiology, College of Basic Medicine Sciences, Jilin University , Changchun, P.R. China
| | - Dhananjaya V Kalvakolanu
- 4 Greenebaum Cancer Center, Department of Microbiology and Immunology, Molecular Biology Program, University of Maryland School Medicine , Baltimore, Maryland
| | - Xichun Liu
- 1 Department of Pathophysiology, College of Basic Medicine Sciences, Jilin University , Changchun, P.R. China
| | - Jiadi Hu
- 1 Department of Pathophysiology, College of Basic Medicine Sciences, Jilin University , Changchun, P.R. China
| | - Duoduo Zhang
- 3 Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, P.R. China
| | - Yuanjie Sun
- 2 Department of Gastroenterology, The Fourth Hospital of Jilin University, Changchun, P.R. China
| | - Ling Zhang
- 1 Department of Pathophysiology, College of Basic Medicine Sciences, Jilin University , Changchun, P.R. China
| | - Deqi Xu
- 5 Dalian Hissen Biopharmaceutical Co., Ltd., Dalian, P.R. China
| | - Xuejian Zhao
- 1 Department of Pathophysiology, College of Basic Medicine Sciences, Jilin University , Changchun, P.R. China
| |
Collapse
|
11
|
Zhang L, Feng H, He Y, Zhao J, Chen Y, Liu Y. Ginseng saponin Rb1 enhances hematopoietic function and dendritic cells differentiation. Acta Biochim Biophys Sin (Shanghai) 2017; 49:746-749. [PMID: 28655146 DOI: 10.1093/abbs/gmx062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Li Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Hui Feng
- Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yibo He
- Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jinfang Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yimin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yonglin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| |
Collapse
|
12
|
Ginseng-Derived Panaxadiol Saponins Promote Hematopoiesis Recovery in Cyclophosphamide-Induced Myelosuppressive Mice: Potential Novel Treatment of Chemotherapy-Induced Cytopenias. Chin J Integr Med 2017; 24:200-206. [PMID: 28432529 DOI: 10.1007/s11655-017-2754-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the potential efficacy of panaxadiol saponins component (PDS-C), a biologically active fraction isolated from total ginsenosides, to reverse chemotherapy-induced myelosuppression and pancytopenia caused by cyclophamide (CTX). METHODS Mice with myelosuppression induced by CTX were treated with PDS-C at a low- (20 mg/kg), moderate- (40 mg/kg), or high-dose (80 mg/kg) for 7 consecutive days. The level of peripheral white blood cell (WBC), neutrophil (NEU) and platelet (PLT) were measured, the histopathology and colony formation were observed, the protein kinase and transcription factors in hematopoietic cells were determined by immunohistochemical staining and Western blot. RESULTS In response to PDS-C therapy, the peripheral WBC, NEU and PLT counts of CTX-induced myelosuppressed mice were significantly increased in a dose-dependent manner. Similarly, bone marrow histopathology examination showed reversal of CTX-induced myelosuppression with increase in overall bone marrow cellularity and the number of hematopoietic cells (P<0.01). PDS-C also promoted proliferation of granulocytic and megakaryocyte progenitor cells in CTX-treated mice, as evidenced by significantly increase in colony formation units-granulocytes/monocytes and -megakaryocytes (P<0.01). The enhancement of hematopoiesis by PDS-C appears to be mediated by an intracellular signaling pathway, this was evidenced by the up-regulation of phosphorylated mitogen-activated protein kinase (p-MEK) and extracellular signal-regulated kinases (p-ERK), and receptor tyrosine kinase (C-kit) and globin transcription factor 1 (GATA-1) in hematopoietic cells of CTX-treated mice (P<0.05). CONCLUSIONS PDS-C possesses hematopoietic growth factor-like activities that promote proliferation and also possibly differentiation of hematopoietic progenitor cells in myelosuppressed mice, probably mediated by a mechanism involving MEK and ERK protein kinases, and C-kit and GATA-1 transcription factors. PDS-C may potentially be a novel treatment of myelosuppression and pancytopenia caused by chemotherapy.
Collapse
|