1
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
2
|
Zhai K, Wang W, Zheng M, Khan GJ, Wang Q, Chang J, Dong Z, Zhang X, Duan H, Gong Z, Cao H. Protective effects of
Isodon Suzhouensis
extract and glaucocalyxin A on chronic obstructive pulmonary disease through SOCS3–JAKs/STATs pathway. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kefeng Zhai
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 China
| | - Wei Wang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Mengqing Zheng
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy University of Central Punjab Lahore 54000 Pakistan
| | - Qunbo Wang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Jingwen Chang
- Faculty of Pharmacy Bengbu Medical College Bengbu 233030 China
| | - Zeng Dong
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Xingtao Zhang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Hong Duan
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 China
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense E‐32004 Spain
| |
Collapse
|
3
|
Xu S, Zhou Y, Yu L, Huang X, Huang J, Wang K, Liu Z. Protective Effect of Eurotium cristatum Fermented Loose Dark Tea and Eurotium cristatum Particle on MAPK and PXR/AhR Signaling Pathways Induced by Electronic Cigarette Exposure in Mice. Nutrients 2022; 14:nu14142843. [PMID: 35889800 PMCID: PMC9318283 DOI: 10.3390/nu14142843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Electronic-cigarette smoke (eCS) has been shown to cause a degree of oxidative stress and inflammatory damage in lung tissue. The aim of this study was to evaluate the repair mechanism of Eurotium cristatum fermented loose dark tea (ECT) and Eurotium cristatum particle metabolites (ECP) sifted from ECT after eCS-induced injury in mice. Sixty C57BL/6 mice were randomly divided into a blank control group, an eCS model group, an eCS + 600 mg/kg ECP treatment group, an eCS + 600 mg/kg ECT treatment group, an eCS + 600 mg/kg ECP prevention group, and an eCS + 600 mg/kg ECT prevention group. The results show that ECP and ECT significantly reduced the eCS-induced oxidative stress and inflammation and improved histopathological changes in the lungs in mice with eCS-induced liver injury. Western blot analysis further revealed that ECP and ECT significantly inhibited the eCS-induced upregulation of the phosphorylation levels of the extracellular Regulated protein Kinases (ERK), c-Jun N-terminal kinase (JNK) and p38mitogen-activated protein kinases (p38MAPK) proteins, and significantly increased the eCS-induced downregulation of the expression levels of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR) proteins. Conclusively, these findings show that ECP and ECT have a significant repairing effect on the damage caused by eCS exposure through the MAPK and PXR/AhR signaling pathways; ECT has a better effect on preventing eCS-induced injury and is suitable as a daily healthcare drink; ECP has a better therapeutic effect after eCS-induced injury, and might be a potential therapeutic candidate for the treatment of eCS-induced injury.
Collapse
Affiliation(s)
- Shuai Xu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
| | - Yufei Zhou
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
| | - Lijun Yu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (L.Y.); (Z.L.)
| | - Xiangxiang Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (S.X.); (Y.Z.); (X.H.); (J.H.); (K.W.)
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (L.Y.); (Z.L.)
| |
Collapse
|
4
|
Fu YS, Kang N, Yu Y, Mi Y, Guo J, Wu J, Weng CF. Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD. Eur Respir Rev 2022; 31:31/164/220028. [PMID: 35705209 PMCID: PMC9648508 DOI: 10.1183/16000617.0028-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
COPD is predicted to become the third leading cause of morbidity and mortality worldwide by 2030. Cigarette smoking (active or passive) is one of its chief causes, with about 20% of cigarette smokers developing COPD from cigarette smoke (CS)-induced irreversible damage and sustained inflammation of the airway epithelium. Inflammasome activation leads to the cleavage of pro-interleukin (IL)-1β and pro-IL-18, along with the release of pro-inflammatory cytokines via gasdermin D N-terminal fragment membrane pores, which further triggers acute phase pro-inflammatory responses and concurrent pyroptosis. There is currently intense interest in the role of nucleotide-binding oligomerisation domain-like receptor family, pyrin domain containing protein-3 inflammasomes in chronic inflammatory lung diseases such as COPD and their potential for therapeutic targeting. Phytochemicals including polyphenols and flavonoids have phyto-medicinal benefits in CS-COPD. Here, we review published articles from the last decade regarding the known associations between inflammasome-mediated responses and ameliorations in pre-clinical manifestations of CS-COPD via polyphenol and flavonoid treatment, with a focus on the underlying mechanistic insights. This article will potentially assist the development of drugs for the prevention and therapy of COPD, particularly in cigarette smokers. This review compiles current investigations into the role of polyphenols/flavonoids in the alleviation of cigarette smoke-induced inflammasome; notably it provides a promising hit for rectifying the treatment of COPD.https://bit.ly/36OcUO9
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China.,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ning Kang
- Dept of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Yanping Yu
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Yan Mi
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jialin Guo
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jingyi Wu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ching-Feng Weng
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China .,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| |
Collapse
|
5
|
Pharmacological Actions, Molecular Mechanisms, Pharmacokinetic Progressions, and Clinical Applications of Hydroxysafflor Yellow A in Antidiabetic Research. J Immunol Res 2021; 2021:4560012. [PMID: 34938814 PMCID: PMC8687819 DOI: 10.1155/2021/4560012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA), a nutraceutical compound derived from safflower (Carthamus tinctorius), has been shown as an effective therapeutic agent in cardiovascular diseases, cancer, and diabetes. Our previous study showed that the effect of HSYA on high-glucose-induced podocyte injury is related to its anti-inflammatory activities via macrophage polarization. Based on the information provided on PubMed, Scopus and Wanfang database, we currently aim to provide an updated overview of the role of HSYA in antidiabetic research from the following points: pharmacological actions, molecular mechanisms, pharmacokinetic progressions, and clinical applications. The pharmacokinetic research of HSYA has laid foundations for the clinical applications of HSYA injection in diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. The application of HSYA as an antidiabetic oral medicament has been investigated based on its recent oral delivery system research. In vivo and in vitro pharmacological research indicated that the antidiabetic activities of HSYA were based mainly on its antioxidant and anti-inflammatory mechanisms via JNK/c-jun pathway, NOX4 pathway, and macrophage differentiation. Further anti-inflammatory exploration related to NF-κB signaling, MAPK pathway, and PI3K/Akt/mTOR pathway might deserve attention in the future. The anti-inflammatory activities of HSYA related to diabetes and diabetic complications will be a highlight in our following research.
Collapse
|
6
|
Eurotium cristatum Fermented Loose Dark Tea Ameliorates Cigarette Smoke-Induced Lung Injury by MAPK Pathway and Enhances Hepatic Metabolic Detoxification by PXR/ AhR Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635080. [PMID: 33777316 PMCID: PMC7972846 DOI: 10.1155/2021/6635080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/05/2021] [Accepted: 02/26/2021] [Indexed: 01/28/2023]
Abstract
Cigarette smoke- (CS-) induced oxidative stress and inflammation in the lung are serious health problems. Primary and reprocessed tea products contain multiple antioxidants that have been reported to protect the lung against CS-induced injury. However, the beneficial effects of Eurotium cristatum fermented loose dark tea (ECT) and Eurotium cristatum particle metabolites (ECP) on CS-induced lung injury and its potential hepatic metabolic detoxification are still unclear. Therefore, sixty mice were randomly divided into six equal groups. CS-exposed mice were prevented or treated with ECP or ECT infusions for 12 or 8 weeks to determine the antioxidative stress, anti-inflammatory and potential metabolic detoxification of ECT and ECP. Thirty-six mice were randomly divided into six equal groups to observe the effects on hepatic metabolic detoxification by replacing daily drinking water with ECT. Results showed that CS significantly decreased the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) and upregulated the expressions of malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), IL-8, and IL-1β in serum. These adverse effects were modulated by ECP and ECT. In addition, ECT upregulated the mRNA expression of pregnane X receptor (PXR) and cytochrome P450 (CYP450) in the liver on daily free drinking ECT mice group. Western blot analysis further revealed that in CS-exposed mice, ECP and ECT significantly decreased the phosphorylation of mitogen-activated protein kinase (MAPK) in the lung but upregulated the protein expressions of PXR and aryl hydrocarbon receptor (AhR) in the liver. Overall, our findings demonstrated that ECT and ECP protected against lung injury induced by CS via MAPK pathway and enhanced hepatic metabolic detoxification via PXR and AhR pathways. Therefore, daily intake of ECT and ECP can potentially protect against CS-induced oxidative and inflammatory injuries.
Collapse
|
7
|
Chen Z, Liu L, Liu Y, Wang S, Zhang S, Dong R, Xu M, Ma Y, Wang J, Zhang Q, Wei P. Hydroxysafflor yellow A induces autophagy in human liver cancer cells by regulating Beclin 1 and ERK expression. Exp Ther Med 2020; 19:2989-2996. [PMID: 32256785 PMCID: PMC7086224 DOI: 10.3892/etm.2020.8552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/30/2020] [Indexed: 12/24/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA) is a water-soluble component of the safflower (Carthamus tinctorius), and research has revealed that HSYA exhibits antitumor effects. In the present study, the effects of HSYA on the autophagy of a Hep-G2 liver cancer cell line, as well as the underlying mechanisms, were investigated. Hep-G2 cells were treated with HSYA and the viability of cells was measured using an MTT assay. Western blotting and immunofluorescence assays were performed to determine the expression of light chain 3 II (LC3-II) and p62, as well as the autophagy regulators Beclin 1 and ERK1/2. Transmission electron microscopy was performed to observe the formation of autophagosomes. The combined effects of HSYA and the autophagy inhibitor chloroquine (CQ) were also determined. The results revealed that the viability of Hep-G2 cells decreased with increasing concentrations of HSYA. Furthermore, LC3-II expression increased significantly and the level of p62 decreased significantly in the HYSA group compared with the control group. Additionally, an increase in Beclin 1 expression and a decrease in phosphorylated-ERK1/2 expression was observed in Hep-G2 cells treated with HYSA. Following treatment with CQ and HSYA, a significant increase in the viability of Hep-G2 cells was observed compared with the HSYA group. Collectively, the results indicated that HSYA induced autophagy by promoting the expression of Beclin 1 and inhibiting the phosphorylation of ERK in liver cancer cells. Therefore, HSYA may serve as a potential therapeutic agent for liver cancer.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Ruijuan Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Mingyang Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yicong Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Jingjing Wang
- Oncology Microstart Intervention Department, Anyang Hospital of Traditional Chinese Medicine, Anyang, Henan 455001, P.R. China
| | - Qian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| |
Collapse
|