1
|
Wang J, Li X, Long J, Gao Q, Pan M, Yang F, Zhang Y. Exploring the therapeutic efficacy and pharmacological mechanism of Guizhi Fuling Pill on ischemic stroke: a meta-analysis and network pharmacology analysis. Metab Brain Dis 2024; 39:1157-1174. [PMID: 39052207 DOI: 10.1007/s11011-024-01383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The role of Guizhi Fuling Pill (GZFL) in the treatment of ischemic stroke (IS) is still controversial, and its pharmacological mechanism remains unclear. To evaluate the efficacy and potential pharmacological mechanisms of GZFL on IS, a comprehensive method integrating meta-analysis, network pharmacology, and molecular docking was employed. Eight electronic databases were searched from inception to November 2023. Review Manager 5.4.1 software was used for meta-analysis. Active compounds and targets of GZFL were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database, Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine, and Encyclopaedia of Traditional Chinese Medicine. Relevant targets of IS were obtained from the DisGeNet, Genecards, and DrugBank databases. GO biological function analysis and KEGG enrichment analysis were performed in the Metascape database. AutoDock Tools and PyMOL software were employed for Molecular docking. The intervention group significantly increased the total effective rate and decreased the NIHSS score. Administration of GZFL also improved the whole blood viscosity (low and high shear rates) and levels of fibrinogen, TNF-α, and IL-6. The key active compounds included quercetin, kaempferol, catechin, and beta-sitosterol, and the core target proteins included SRC, MAPK1, TP53, JUN, RELA, AKT1, and TNF. GO analysis mainly involved inflammation response, cellular response to lipids, and regulation of ion transport. The core pathways were lipid and atherosclerosis, cAMP, calcium, IL-17, and MAPK signaling pathways. Key active compounds showed good affinity with the core targets. The underlying mechanisms of GZFL in IS treatment are primarily related to its anti-inflammatory, anti-atherosclerosis, and neuroprotective effects.
Collapse
Affiliation(s)
- Jing Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
| | - Xinmin Li
- School of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Junzi Long
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
| | - Qian Gao
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
| | - Mengyang Pan
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
| | - Fangjie Yang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
| | - Yasu Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
2
|
Xie Y, Sun G, Tao Y, Zhang W, Yang S, Zhang L, Lu Y, Du G. Current advances on the therapeutic potential of scutellarin: an updated review. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:20. [PMID: 38436812 PMCID: PMC10912075 DOI: 10.1007/s13659-024-00441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Scutellarin is widely distributed in Scutellaria baicalensis, family Labiatae, and Calendula officinalis, family Asteraceae, and belongs to flavonoids. Scutellarin has a wide range of pharmacological activities, it is widely used in the treatment of cerebral infarction, angina pectoris, cerebral thrombosis, coronary heart disease, and other diseases. It is a natural product with great research and development prospects. In recent years, with in-depth research, researchers have found that wild scutellarin also has good therapeutic effects in anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, treatment of metabolic diseases, and protection of kidney. The cancer treatment involves glioma, breast cancer, lung cancer, renal cancer, colon cancer, and so on. In this paper, the sources, pharmacological effects, in vivo and in vitro models of scutellarin were summarized in recent years, and the current research status and future direction of scutellarin were analyzed.
Collapse
Affiliation(s)
- Yifei Xie
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Guotong Sun
- Pharmaceutical College of Henan University, Kaifeng, 475004, China
| | - Yue Tao
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen Zhang
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | - Shiying Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Chen S, Fan F, Zhang Y, Zeng J, Li Y, Xu N, Zhang Y, Meng XL, Lin JM. Metabolites from scutellarin alleviating deferoxamine-induced hypoxia injury in BV2 cells cultured on microfluidic chip combined with a mass spectrometer. Talanta 2023; 259:124478. [PMID: 36989966 DOI: 10.1016/j.talanta.2023.124478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
The changes of metabolites of tricarboxylic acid (TCA) cycle in cells under hypoxia play a key role in drug screening. In order to dynamically monitor the drug metabolism changes of Scutellarin in the hypoxia environment induced by deferoxamine (DFO), a microfluidic-chip mass spectrometry method was used to study the real-time monitoring of drug metabolism changes under hypoxia conditions. This system has six drug-loading units, cell culture chamber, metabolite collection, filtration, HPLC separation and mass spectrometer. The cells in each microchannel were incubated with continuous flow of culture medium, metabolites will be collected by the fixed card slot, automatic sampling needle will be precise positioned and sampled. Through this new system combined with molecular biological methods, the changes of metabolites in TCA cycle of BV2 cells and drug metabolism of Scutellarin can be determined in real-time. In general, we illustrated a new mechanism of Scutellarin for reducing BV2 cell hypoxia injury and presented a novel analysis strategy that opened a way for real-time online monitoring of the energy metabolic mechanism of the effect of drugs on cells and further provided a superior strategy to screen natural drug candidates for hypoxia-related brain disease treatment.
Collapse
|
4
|
Yi Y, Hao Z, Sun P, Fan K, Yin W, Guo J, Zheng X, Sun N, Li H. Study on the mechanism of scutellarin's protective effect against ZEA-induced mouse ovarian granulosa cells injury. Food Chem Toxicol 2022; 170:113481. [DOI: 10.1016/j.fct.2022.113481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
5
|
Liu X, Xiao X, Han X, Yao L, Lan W. A New Therapeutic Trend: Natural Medicine for Ameliorating Ischemic Stroke via PI3K/Akt Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227963. [PMID: 36432062 PMCID: PMC9694461 DOI: 10.3390/molecules27227963] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Ischemic stroke (IS) is an acute cerebrovascular disease caused by sudden arterial occlusion, which is characterized by a high morbidity, mortality, and disability rate. It is one of the most important causes of nervous system morbidity and mortality in the world. In recent years, the search for new medicine for the treatment of IS has become an attractive research focus. Due to the extremely limited time window of traditional medicine treatment, some side effects may occur, and accompanied by the occurrence of adverse reactions, the frequency of exploration with natural medicine is significantly increased. Phosphatidylinositol-3-kinase/Protein kinase B (PI3K/Akt) signaling pathway is a classical pathway for cell metabolism, growth, apoptosis, and other physiological activities. There is considerable research on medicine that treats various diseases through this pathway. This review focuses on how natural medicines (including herbs and insects) regulate important pathophysiological processes such as inflammation, oxidative stress, apoptosis, and autophagy through the PI3K/Akt signaling pathway, and the role it plays in improving IS. We found that many kinds of herbal medicine and insect medicine can alleviate the damage caused by IS through the PI3K/Akt signaling pathway. Moreover, the prescription after their combination can also achieve certain results. Therefore, this review provides a new candidate category for medicine development in the treatment of IS.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
- Correspondence:
| |
Collapse
|
6
|
Wang L, Yang S, Li L, Huang Y, Li R, Fang S, Jing J, Yang C. A low-intensity repetitive transcranial magnetic stimulation coupled to magnetic nanoparticles loaded with scutellarin enhances brain protection against cerebral ischemia reperfusion injury. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Chen YP, Wang KX, Cai JQ, Li Y, Yu HL, Wu Q, Meng W, Wang H, Yin CH, Wu J, Huang MB, Li R, Guan DG. Detecting Key Functional Components Group and Speculating the Potential Mechanism of Xiao-Xu-Ming Decoction in Treating Stroke. Front Cell Dev Biol 2022; 10:753425. [PMID: 35646921 PMCID: PMC9136080 DOI: 10.3389/fcell.2022.753425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Stroke is a cerebrovascular event with cerebral blood flow interruption which is caused by occlusion or bursting of cerebral vessels. At present, the main methods in treating stroke are surgical treatment, statins, and recombinant tissue-type plasminogen activator (rt-PA). Relatively, traditional Chinese medicine (TCM) has widely been used at clinical level in China and some countries in Asia. Xiao-Xu-Ming decoction (XXMD) is a classical and widely used prescription in treating stroke in China. However, the material basis of effect and the action principle of XXMD are still not clear. To solve this issue, we designed a new system pharmacology strategy that combined targets of XXMD and the pathogenetic genes of stroke to construct a functional response space (FRS). The effective proteins from this space were determined by using a novel node importance calculation method, and then the key functional components group (KFCG) that could mediate the effective proteins was selected based on the dynamic programming strategy. The results showed that enriched pathways of effective proteins selected from FRS could cover 99.10% of enriched pathways of reference targets, which were defined by overlapping of component targets and pathogenetic genes. Targets of optimized KFCG with 56 components can be enriched into 166 pathways that covered 80.43% of 138 pathways of 1,012 pathogenetic genes. A component potential effect score (PES) calculation model was constructed to calculate the comprehensive effective score of components in the components-targets-pathways (C-T-P) network of KFCGs, and showed that ferulic acid, zingerone, and vanillic acid had the highest PESs. Prediction and docking simulations show that these components can affect stroke synergistically through genes such as MEK, NFκB, and PI3K in PI3K-Akt, cAMP, and MAPK cascade signals. Finally, ferulic acid, zingerone, and vanillic acid were tested to be protective for PC12 cells and HT22 cells in increasing cell viabilities after oxygen and glucose deprivation (OGD). Our proposed strategy could improve the accuracy on decoding KFCGs of XXMD and provide a methodologic reference for the optimization, mechanism analysis, and secondary development of the formula in TCM.
Collapse
Affiliation(s)
- Yu-peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ke-xin Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Mian-bo Huang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Rong Li
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Dao-gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| |
Collapse
|
8
|
Novel approach to unravel the Heat shock proteins (HSPs) with anti-ischemic stroke and human infections. J Infect Public Health 2022; 15:379-388. [DOI: 10.1016/j.jiph.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
|
9
|
Qi G, Jiang K, Qu J, Zhang A, Xu Z, Li Z, Zheng X, Li Z. The Material Basis and Mechanism of Xuefu Zhuyu Decoction in Treating Stable Angina Pectoris and Unstable Angina Pectoris. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3741027. [PMID: 35140797 PMCID: PMC8820872 DOI: 10.1155/2022/3741027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
METHODS Firstly, we used a network proximity approach to calculate and compare the effectiveness of the formula with that of Western drugs for each type of angina, including all targets and intersecting targets, from a topological perspective. Secondly, we compared the mechanisms of action of the two angina pectoris at three levels and five aspects, including conventional and modular analysis approaches. Thirdly, based on the unique functions of each angina in the complex heterogeneous network, we designed a reverse process for finding the material basis using dynamic, static, and enriched items as well as a total item. Finally, the designed inverse process, material basis, and mechanism of action were validated. RESULTS The target network of Xuefu Zhuyu decoction is closer to the target network of each type of angina than that of Western drugs, and the intersection targets have a closer proximity. Comparison of the mechanisms of action showed that stable angina and unstable angina had 158 common targets, while the unique targets were 34 and 1, respectively. Modularity analysis showed that the GO similarity of target modules was highly correlated with KEGG similarity. We ended up with 67 compounds upregulated for stable angina and 47 compounds upregulated for unstable angina. Our results were validated by literature mining, high-volume molecular docking, and miRNA enrichment analysis. CONCLUSIONS For both types of angina pectoris, Xuefu Zhuyu decoction is superior to Western drugs. A comparison of various aspects led to the unique mechanisms of action, from which the material basis of each type of angina was deduced.
Collapse
Affiliation(s)
- Guanpeng Qi
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Kaiwen Jiang
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiaming Qu
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Aijun Zhang
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ze Xu
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhaohang Li
- 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaosong Zheng
- 2School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Zuojing Li
- 2School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
10
|
Identification of Sitogluside as a Potential Skin-Pigmentation-Reducing Agent through Network Pharmacology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4883398. [PMID: 34603597 PMCID: PMC8483913 DOI: 10.1155/2021/4883398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
Many traditional Chinese medicines (TCMs) with skin-whitening properties have been recorded in the Ben-Cao-Gang-Mu and in folk prescriptions, and some literature confirms that their extracts do have the potential to inhibit pigmentation. However, no systematic studies have identified the specific regulatory mechanisms of the potential active ingredients. The aim of this study was to screen the ingredients in TCMs that inhibit skin pigmentation through a network pharmacology system and to explore underlying mechanisms. We identified 148 potential active ingredients from 14 TCMs, and based on the average “degree” of the topological parameters, the top five TCMs (Fructus Ligustri Lucidi, Hedysarum multijugum Maxim., Ampelopsis japonica, Pseudobulbus Cremastrae Seu Pleiones, and Paeoniae Radix Alba) that were most likely to cause skin-whitening through anti-inflammatory processes were selected. Sitogluside, the most common ingredient in the top five TCMs, inhibits melanogenesis in human melanoma cells (MNT1) and murine melanoma cells (B16F0) and decreases skin pigmentation in zebrafish. Furthermore, mechanistic research revealed that sitogluside is capable of downregulating tyrosinase (TYR) expression by inhibiting the ERK and p38 pathways and inhibiting TYR activity. These results demonstrate that network pharmacology is an effective tool for the discovery of natural compounds with skin-whitening properties and determination of their possible mechanisms. Sitogluside is a novel skin-whitening active ingredient with dual regulatory effects that inhibit TYR expression and activity.
Collapse
|
11
|
Glavaški M, Velicki L. Shared Molecular Mechanisms of Hypertrophic Cardiomyopathy and Its Clinical Presentations: Automated Molecular Mechanisms Extraction Approach. Life (Basel) 2021; 11:life11080785. [PMID: 34440529 PMCID: PMC8398249 DOI: 10.3390/life11080785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease with a prevalence of 1 in 500 people and varying clinical presentations. Although there is much research on HCM, underlying molecular mechanisms are poorly understood, and research on the molecular mechanisms of its specific clinical presentations is scarce. Our aim was to explore the molecular mechanisms shared by HCM and its clinical presentations through the automated extraction of molecular mechanisms. Molecular mechanisms were congregated by a query of the INDRA database, which aggregates knowledge from pathway databases and combines it with molecular mechanisms extracted from abstracts and open-access full articles by multiple machine-reading systems. The molecular mechanisms were extracted from 230,072 articles on HCM and 19 HCM clinical presentations, and their intersections were found. Shared molecular mechanisms of HCM and its clinical presentations were represented as networks; the most important elements in the intersections’ networks were found, centrality scores for each element of each network calculated, networks with reduced level of noise generated, and cooperatively working elements detected in each intersection network. The identified shared molecular mechanisms represent possible mechanisms underlying different HCM clinical presentations. Applied methodology produced results consistent with the information in the scientific literature.
Collapse
Affiliation(s)
- Mila Glavaški
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Correspondence: or
| | - Lazar Velicki
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Institute of Cardiovascular Diseases Vojvodina, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| |
Collapse
|
12
|
Systematic Investigation of the Effect of Powerful Tianma Eucommia Capsule on Ischemic Stroke Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8897313. [PMID: 34194527 PMCID: PMC8203382 DOI: 10.1155/2021/8897313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Background Ischemic stroke (IS) is a serious disease with a high rate of death and disability, and a growing number of people are becoming victims. Existing drugs not only have limited therapeutic effects but also have obvious side effects. Most importantly, drug resistance due to long-term or improper use of drugs is detrimental to patients. Therefore, it is urgent to find some alternative or supplementary medicines to alleviate the current embarrassment. Powerful Tianma Eucommia Capsule (PTEC) is mainly used to treat IS in China for thousands of years; however, the molecular mechanism is not clear. Methods Pharmacology ingredients and target genes were filtered and downloaded from websites. A pharmacology ingredient-target gene network was constructed to predict the molecular interactions between ingredients and target genes. Enrichment analysis was performed to explore the possible signal pathways. LeDock was used to simulate the interaction form between proteins and main active ingredients and to deduce key amino acid positions. Results Two hundred eighty-nine target genes and seventy-four pharmacological ingredients were obtained from public databases. Several key ingredients (quercetin, kaempferol, and stigmasterol) and primary core target genes (PTGS1, NCOA2, and PRSS1) were detected through ingredient-target gene network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that ingredients affect networks mainly in nuclear receptor activity and G protein-coupled amine receptor activity; besides, fluid shear stress and atherosclerosis, human cytomegalovirus infection, and hepatitis B signaling pathways might be the principal therapy ways. A series of presumed key amino acid sites (189ASP, 190SER, 192GLN, 57HIS, and 99TYE) were calculated in PRSS1. Six of the target genes were differentially expressed between male and female patients. Conclusions Seven new putative target genes (ACHE, ADRA1A, AR, CHRM3, F7, GABRA1, and PRSS1) were observed in this work. Based on the result of GO and KEGG analysis, this work will be helpful to further demonstrate the molecular mechanism of PTEC treatment of IS.
Collapse
|