1
|
Vyhlídalová B, Ondrová K, Zůvalová I. Dietary monoterpenoids and human health: Unlocking the potential for therapeutic use. Biochimie 2024:S0300-9084(24)00202-5. [PMID: 39260556 DOI: 10.1016/j.biochi.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Natural products are widely used in different aspects of our lives - from household cleaners and food production, via cosmetics and aromatherapy, to both alternative and traditional medicine. In our research group, we have recently described several monoterpenoids with potential in the antiviral and anticancer therapy by allosteric targeting of aryl hydrocarbon receptor (AhR). Prior to any practical application, biological effects on human organism must be taken in concern. This review article is focused on the biological effects of 5 monoterpenoids on the human health previously identified as AhR antagonists with a therapeutic potential as antiviral and anticancer agents. We have thoroughly described cytotoxic, anti-inflammatory, anti-proliferative, and anticancer effects, as well as known interactions with nuclear receptors. As clearly demonstrated, monoterpenoids in general represent almost an inexhaustible reservoir of natural compounds possessing the ability to influence, modulate and improve human health.
Collapse
Affiliation(s)
- Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Karolína Ondrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Iveta Zůvalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
2
|
Taibi M, Elbouzidi A, Haddou M, Baraich A, Ou-Yahia D, Bellaouchi R, Mothana RA, Al-Yousef HM, Asehraou A, Addi M, Guerrouj BE, Chaabane K. Evaluation of the Interaction between Carvacrol and Thymol, Major Compounds of Ptychotis verticillata Essential Oil: Antioxidant, Anti-Inflammatory and Anticancer Activities against Breast Cancer Lines. Life (Basel) 2024; 14:1037. [PMID: 39202779 PMCID: PMC11355195 DOI: 10.3390/life14081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
The objective of this study was to evaluate the antioxidant, anti-inflammatory, and anticancer properties of thymol, carvacrol, and their equimolar mixture. Antioxidant activities were assessed using the DPPH, ABTS, and ORAC methods. The thymol/carvacrol mixture exhibited significant synergism, surpassing the individual compounds and ascorbic acid in DPPH (IC50 = 43.82 ± 2.41 µg/mL) and ABTS (IC50 = 23.29 ± 0.71 µg/mL) assays. Anti-inflammatory activity was evaluated by inhibiting the 5-LOX, COX-1, and COX-2 enzymes. The equimolar mixture showed the strongest inhibition of 5-LOX (IC50 = 8.46 ± 0.92 µg/mL) and substantial inhibition of COX-1 (IC50 = 15.23 ± 2.34 µg/mL) and COX-2 (IC50 = 14.53 ± 2.42 µg/mL), indicating a synergistic effect. Anticancer activity was tested on MCF-7, MDA-MB-231, and MDA-MB-436 breast cancer cell lines using the MTT assay. The thymol/carvacrol mixture demonstrated superior cytotoxicity (IC50 = 0.92-1.70 µg/mL) and increased selectivity compared to cisplatin, with high selectivity indices (144.88-267.71). These results underscore the promising therapeutic potential of the thymol/carvacrol combination, particularly for its synergistic antioxidant, anti-inflammatory, and anticancer properties against breast cancer. This study paves the way for developing natural therapies against breast cancer and other conditions associated with oxidative stress and inflammation, leveraging the synergistic effects of natural compounds like thymol and carvacrol.
Collapse
Affiliation(s)
- Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Abdellah Baraich
- Department of Biological Engineering, IUT Saint-Brieuc, University of Rennes, 35000 Rennes, France; (A.B.); (D.O.-Y.); (A.A.)
| | - Douaae Ou-Yahia
- Department of Biological Engineering, IUT Saint-Brieuc, University of Rennes, 35000 Rennes, France; (A.B.); (D.O.-Y.); (A.A.)
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (H.M.A.-Y.)
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (H.M.A.-Y.)
| | - Abdeslam Asehraou
- Department of Biological Engineering, IUT Saint-Brieuc, University of Rennes, 35000 Rennes, France; (A.B.); (D.O.-Y.); (A.A.)
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (A.E.); (M.H.); (B.E.G.); (K.C.)
| |
Collapse
|
3
|
Situmorang PC, Ilyas S, Nugraha SE, Syahputra RA, Nik Abd Rahman NMA. Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Front Pharmacol 2024; 15:1387866. [PMID: 39104398 PMCID: PMC11298448 DOI: 10.3389/fphar.2024.1387866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer refers to the proliferation and multiplication of aberrant cells inside the human body, characterized by their capacity to proliferate and infiltrate various anatomical regions. Numerous biochemical pathways and signaling molecules have an impact on the cancer auto biogenesis process. The regulation of crucial cellular processes necessary for cell survival and proliferation, which are triggered by phytochemicals, is significantly influenced by signaling pathways. These pathways or components are regulated by phytochemicals. Medicinal plants are a significant reservoir of diverse anticancer medications employed in chemotherapy. The anticancer effects of phytochemicals are mediated by several methods, including induction of apoptosis, cessation of the cell cycle, inhibition of kinases, and prevention of carcinogenic substances. This paper analyzes the phytochemistry of seven prominent plant constituents, namely, alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins, focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death receptors, p53, p38, and actin dynamics. Hence, this review has examined a range of phytochemicals, encompassing their structural characteristics and potential anticancer mechanisms. It has underscored the significance of plant-derived bioactive compounds in the prevention of cancer, utilizing diverse molecular pathways. In addition, this endeavor also seeks to incentivize scientists to carry out clinical trials on anticancer medications derived from plants.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
4
|
Thalappil MA, Singh P, Carcereri de Prati A, Sahoo SK, Mariotto S, Butturini E. Essential oils and their nanoformulations for breast cancer therapy. Phytother Res 2024; 38:556-591. [PMID: 37919622 DOI: 10.1002/ptr.8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Breast Cancer (BC) is the most prevalent type of cancer in the world. Current treatments include surgery, radiation, and chemotherapy but often are associated with high toxicity to normal tissues, chemoresistance, and relapse. Thus, developing novel therapies which could combat these limitations is essential for effective treatment. In this context, phytochemicals are increasingly getting popular due to their safety profile, ability to efficiently target tumors, and circumvent limitations of existing treatments. Essential Oils (EOs) are mixtures of various phytochemicals which have shown potential anticancer activity in preclinical BC models. However, their clinical translation is limited by factors such as high volatility, low stability, and poor solubility. Nanotechnology has facilitated their encapsulation in a variety of nanostructures and proven to overcome these limitations. In this review, we have efficiently summarized the current knowledge on the anticancer effect of EOs and constituents in both in in vitro and in in vivo BC models. Further, we also provide a descriptive account on the potential of nanotechnology in enhancing the anti-BC activity of EOs and their constituents. The papers discussed in this review were selected using the keywords "antiproliferative Essential Oils in breast cancer," "anticancer activity of Essential Oil in breast cancer," and "cytotoxicity of Essential Oils in breast cancer" performed in PubMed and ScienceDirect databases.
Collapse
Affiliation(s)
- Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Priya Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Yu Q, Xu C, Song J, Jin Y, Gao X. Mechanisms of Traditional Chinese medicine/natural medicine in HR-positive Breast Cancer: A comprehensive Literature Review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117322. [PMID: 37866466 DOI: 10.1016/j.jep.2023.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the emergence of endocrine resistance, the survival and good prognosis of HR-positive breast cancer (HR + BC) patients are threatened. As a common complementary and alternative therapy in cancer treatment, traditional Chinese medicine (TCM) has been widely used, and its internal mechanisms have been increasingly explored. AIM OF THE REVIEW In this review, the development status and achievements in understanding of the mechanisms related to the anti-invasion and anti-metastasis effects of TCM against HR + BC and the reversal of endocrine drug resistance by TCM in recent years have been summarized to provide ideas for antitumour research on the active components of TCM/natural medicine. METHODS We searched the electronic databases PubMed, Web of Science, and China National Knowledge Infrastructure database (CNKI) (from inception to July 2023) with the key words "HR-positive breast cancer" or "HR-positive breast carcinoma", "HR + BC" and "traditional Chinese medicine", "TCM", or "natural plant", "herb", etc., with the aim of elucidating the intrinsic mechanisms of traditional Chinese medicine and natural medicine in the treatment of HR + BC. RESULTS TCM/natural medicine monomers and formulas can regulate the expression of related genes and proteins through the PI3K/AKT, JAK2/STAT3, MAPK, Wnt and other signalling pathways, inhibit the proliferation and metastasis of HR + BC tumours, play a synergistic role in combination with endocrine drugs, and reverse endocrine drug resistance. CONCLUSION The wide variety of TCM/natural medicine components makes the research and development of new methods of TCM for BC treatments more selective and innovative. Although progress has been made on research on TCM/natural medicine, there are still many problems in clinical and basic experimental designs, and more in-depth scientific explorations and research are still needed.
Collapse
Affiliation(s)
- Qinghong Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Chuchu Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaqing Song
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Ying Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Xiufei Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
6
|
Ateeq MAM, Aalhate M, Mahajan S, Kumar GS, Sen S, Singh H, Gupta U, Maji I, Dikundwar A, Guru SK, Singh PK. Self-nanoemulsifying drug delivery system (SNEDDS) of docetaxel and carvacrol synergizes the anticancer activity and enables safer toxicity profile: optimization, and in-vitro, ex-vivo and in-vivo pharmacokinetic evaluation. Drug Deliv Transl Res 2023; 13:2614-2638. [PMID: 37067745 DOI: 10.1007/s13346-023-01342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/18/2023]
Abstract
Docetaxel (DTX) is a first-line chemotherapeutic molecule with a broad-spectrum anticancer activity. On the other hand, carvacrol (CV) has anti-inflammatory, antioxidant, cytotoxic, and hepatoprotective properties that could reduce undue toxicity caused by DTX chemotherapy. Thus, in order to overcome the challenges posed by DTX's poor aqueous solubility, low permeability, hepatic first pass, and systemic toxicities, we have developed a novel solid self-nanoemulsifying drug delivery system (S-SNEDDS) co-loaded with DTX and CV. In the present investigation, liquid-SNEDDS (L-SNEDDS) were fabricated using Nigella sativa oil, Cremophor RH 40, and Ethanol which was converted into solid by lyophilization using Aerosil 200. The reconstituted CV-DTX-S-SNEDDS showed an average globule size of < 200 nm with promising flow properties (angle of repose θ: 33.22 ± 0.06). Additionally, 2.3-fold higher dissolution of DTX was observed from CV-DTX-S-SNEDDS after 6 h as compared to free DTX. Similar trend was followed in dialysis release experiments with 1.5-fold higher release within 24 h. Ex vivo permeation studies demonstrated significantly increased permeation of 1077.02 ± 12.72 μg/cm2 of CV-DTX-S-SNEDDS after 12 h. In vitro cell cytotoxicity studies revealed 5.2-fold reduction in IC50 as compared to free DTX in MDA-MB-231 cells. Formulation was able to induce higher apoptosis in cells treated with CV-DTX-S-SNEDDS as compared to free DTX and CV. It was evident from toxicity studies that CV-DTX-S-SNEDDS was well tolerated at higher dose where CV was able to manage the toxic effects of free DTX. In vivo pharmacokinetic study showed 3.4-fold increased Cmax and improved oral bioavailability as compared to free DTX. Thus, CV-DTX-S-SNEDDS could be an encouraging option for facilitating DTX oral therapy.
Collapse
Affiliation(s)
- Mohd Aman Mohd Ateeq
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Gogikar Shiva Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Sibu Sen
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Amol Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
7
|
Salehi A, Naserzadeh P, Tarighi P, Afjeh-Dana E, Akhshik M, Jafari A, Mackvandi P, Ashtari B, Mozafari M. Fabrication of a microfluidic device for probiotic drug's dosage screening: Precision Medicine for Breast Cancer Treatment. Transl Oncol 2023; 34:101674. [PMID: 37224765 DOI: 10.1016/j.tranon.2023.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Breast cancer is the most common cancer in women; it has been affecting the lives of millions each year globally and microfluidic devices seem to be a promising method for the future advancements in this field. This research uses a dynamic cell culture condition in a microfluidic concentration gradient device, helping us to assess breast anticancer activities of probiotic strains against MCF-7 cells. It has been shown that MCF-7 cells could grow and proliferate for at least 24 h; however, a specific concentration of probiotic supernatant could induce more cell death signaling population after 48 h. One of our key findings was that our evaluated optimum dose (7.8 mg/L) was less than the conventional static cell culture treatment dose (12 mg/L). To determine the most effective dose over time and the percentage of apoptosis versus necrosis, flowcytometric assessment was performed. Exposing the MCF-7 cells to probiotic supernatant after 6, 24 and 48 h, confirmed that the apoptotic and necrotic cell death signaling were concentration and time dependent. We have shown a case that these types of microfluidics platforms performing dynamic cell culture could be beneficial in personalized medicine and cancer therapy.
Collapse
Affiliation(s)
- Ali Salehi
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Parvaneh Naserzadeh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Elham Afjeh-Dana
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Akhshik
- Centre for Biocomposites and Biomaterials Processing. University of Toronto, Canada; EPICentre, University of Windsor, Canada
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Pooyan Mackvandi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran; Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy
| | - Behnaz Ashtari
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoud Mozafari
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
8
|
Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28:1193. [PMID: 36770859 PMCID: PMC9919305 DOI: 10.3390/molecules28031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.
Collapse
Affiliation(s)
- Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ziyad Mohammed Althafar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ahmed Hussain Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Jafar Jameela
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| |
Collapse
|
9
|
Dietary flavonoid carvacrol triggers the apoptosis of human breast cancer MCF-7 cells via the p53/Bax/Bcl-2 axis. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:46. [PMID: 36495389 DOI: 10.1007/s12032-022-01918-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Recently, numerous studies have shown that natural compounds such as carvacrol can be used as therapeutic agents for medicinal purposes. Although carvacrol was found to suppress breast cancer cell lines, however, whether the therapeutic effect of carvacrol on breast cancer is caused by increasing the expression of pro-apoptotic genes in the MCF-7 cell line has not been studied. In this research, we investigate the effect of carvacrol on the expression of P53, pro-apoptotic Bax and anti-apoptotic BCL-2 genes in MCF-7 cells. After preparation and cultivation of MCF-7 cells, the IC50 value of carvacrol on the cells was evaluated by MTT assay, and then apoptosis induction was observed in the cell line treated with different concentrations of carvacrol by DAPI staining. To assess the expression level of Bax, P53 and Bcl-2 both in genes and protein levels QPCR method and western blot analysis were used. According to the results of the research, it was determined that the IC50 of carvacrol compound in MCF-7 cells is 305 µM. DAPI staining exhibit apoptosis and morphological changes in treated MCF-7 cells. Real-time PCR assay and western blot showed increasing the Bax and P53 expression and decreasing the expression of the Bcl-2 anti-apoptotic gene and protein. These results showed that carvacrol has cell growth inhibition effects on the MCF-7 cancer cell line. Carvacrol-induced p53-dependent apoptosis, which might be related to the Bax/Bcl-2 associated pathway. These results indicated that carvacrol could be considered suitable for the prevention and treatment of breast cancer.
Collapse
|
10
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
P62/SQSTM1 mediates the autophagy-lysosome degradation of CDK2 protein undergoing PI3Kα/AKT T308 inhibition. Biochem Biophys Res Commun 2022; 627:5-11. [PMID: 36007335 DOI: 10.1016/j.bbrc.2022.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
CDK2 forms a complex with cyclin A and cyclin E to promote the progress of cell cycle, but when cyclin A and cyclin E are dissociated from the complex and degraded by the ubiquitin proteasome pathway, the fate of the inactive CDK2 is unclear. In this study, we found that the inactive CDK2 protein was degraded by autophagy-lysosome pathway. In the classic model of G0/G1 phase arrest induced by serum starvation, we found that the mRNA level in CDK2 did not change but the protein level decreased. Subsequently, using PI3K and AKT inhibitors and gene knockout methods, it was found that CDK2 degradation was mediated by the inhibition of PI3Kα/AKTT308. In addition, P62/SQSTM1 was found to bind to the inactivated CDK2 protein to help it enter autophagy-lysosome degradation in a CTSB-dependent manner. Taken together, these results confirm that the PI3Kα/AKTT308 inhibition leads to degradation of CDK2 protein in the autophagy-lysosome pathway. These data reveal a new molecular mechanism of CDK2 protein degradation and provide a new strategy and method for regulating CDK2 protein.
Collapse
|
12
|
Gökalp F. Therapeutic effect of some natural active compounds for breast cancer. Med Oncol 2022; 39:115. [PMID: 35674845 DOI: 10.1007/s12032-022-01704-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 05/10/2023]
Abstract
The extracts obtained from plants have been used in the treatment of many diseases since the earliest times. Today, it is of great importance to investigate the effects of the active molecules in these plant extracts at the molecular level together with the analysis. The effect of certain active compounds found in some plants, widely used as medicinal plants, on breast cancer has been investigated using docking. As a result of the docking scores obtained, it can be understood that the active molecules used in this study can be quite effective in controlling breast cancer. Promyelocytic leukemia is an important checkpoint from the literature for breast cancer and the docking energy values of Thymoquinone, Piperine and Carvacrol, as the active molecules in the control of this pathway. This study is very important when evaluated in terms of directing experimental studies by determining the most suitable active substances by comparing the activities of molecules in a short time.
Collapse
Affiliation(s)
- Faik Gökalp
- Department of Mathematics and Science Education, Science Education, Education Faculty, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey.
| |
Collapse
|
13
|
Yin X, Chen H, Chen S, Zhang S. Screening and Validation of a Carvacrol-Targeting Viability-Regulating Protein, SLC6A3, in Liver Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:3736104. [PMID: 35401884 PMCID: PMC8986433 DOI: 10.1155/2022/3736104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Background Liver hepatocellular carcinoma (LIHC) is the second leading cause of tumor-related death in the world. Carvacrol was also found to inhibit multiple cancer types. Here, we proposed that Carvacrol inhibited LIHC. Methods We used MTT assay to determine the inhibition of Carvacrol on LIHC cells. BATMAN-TCM was used to predict targets of Carvacrol. These targets were further screened by their survival association and expression in cancer using TCGA data. The bioinformatic screened candidates were further validated in in vitro experiments and clinical samples. Finally, docking models of the interaction of Carvacrol and target protein were conducted. Results Carvacrol inhibited the viability of LIHC cell lines. 40 target genes of Carvacrol were predicted, 8 of them associated with survival. 4 genes were found differentially expressed in LIHC vs. normal liver. Among these genes, the expression of SLC6A3 and SCN4A was found affected by Carvacrol in LIHC cells, but only SLC6A3 correlated with the viability inhibition of Carvacrol on LIHC cell lines. A docking model of the interaction of Carvacrol and SLC6A3 was established with a good binding affinity. SLC6A3 knockdown and expression revealed that SLC6A3 promoted the viability of LIHC cells. Conclusion Carvacrol inhibited the viability of LIHC cells by downregulating SLC6A3.
Collapse
Affiliation(s)
- Xieling Yin
- Department of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated To Nantong University, China
| | - Hongjian Chen
- Department of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated To Nantong University, China
| | - Shi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated To Nantong University, China
| | - Suqing Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated To Nantong University, China
| |
Collapse
|
14
|
Alanazi R, Nakatogawa H, Wang H, Ji D, Luo Z, Golbourn B, Feng Z, Rutka JT, Sun H. Inhibition of TRPM7 with carvacrol suppresses glioblastoma functions
in vivo. Eur J Neurosci 2022; 55:1483-1491. [DOI: 10.1111/ejn.15647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Haitao Wang
- Departments of Surgery
- Departments of Surgery Physiology
| | | | - Zhengwei Luo
- Departments of Surgery
- Departments of Surgery Physiology
| | - Brian Golbourn
- Departments of Cell Biology SickKids Research Institute, The Hospital for Sick Children Toronto Canada
| | | | | | - Hong‐Shuo Sun
- Departments of Surgery
- Departments of Surgery Physiology
- Pharmacology, Temerty Faculty of Medicine
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto Canada
| |
Collapse
|
15
|
Mbese Z, Nell M, Fonkui YT, Ndinteh DT, Steenkamp V, Aderibigbe BA. Hybrid Compounds Containing Carvacrol Scaffold: In Vitro Antibacterial and Cytotoxicity Evaluation. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:54-68. [PMID: 35078393 DOI: 10.2174/1574891x16666220124122445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The design of hybrid compounds is a distinct approach for developing potent bioactive agents. Carvacrol, an essential oil, exhibits antimicrobial, antifungal, antioxidant, and anticancer activity, making it a good precursor for the development of compounds with potent biological activities. Some patents have reported carvacrol derivatives with promising biological activities. OBJECTIVE This study aimed to prepare hybrid compounds containing a carvacrol scaffold with significant antibacterial and anticancer activity. METHODS Esterification reactions between carvacrol and known pharmacophores were performed at room temperature and characterized using 1H-NMR, 13CNMR, and UHPLC-HRMS. In vitro antibacterial study was determined using the microdilution assay and cytotoxicity evaluation using sulforhodamine B staining assay. RESULTS The FTIR spectra of the carvacrol hybrids revealed prominent bands in the range of 1612-1764 cm-1 and 1014-1280 cm-1 due to (C=O) and (C-O) stretching vibrations, respectively. The structures of the carvacrol hybrids were confirmed by 1H-NMR, 13C-NMR, and UHPLC-HRMS analysis, and compound 5 exhibited superior activity when compared to the hybrid compounds against the strains of bacteria used in the study. The in vitro cytotoxicity evaluation showed that compound 3 induced cytotoxicity in all the cancer cell lines; MDA (16.57 ± 1.14 μM), MCF-7 (0.47 ± 1.14 μM), and DU145 (16.25 ± 1.08 μM), as well as the normal breast cells, MCF-12A (0.75± 1.30 μM). Compound 7 did not induce cytotoxicity in the cell lines tested (IC50 > 200 μM). CONCLUSION The modification of carvacrol through hybridization is a promising approach to develop compounds with significant antibacterial and anticancer activity.
Collapse
Affiliation(s)
- Zintle Mbese
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
| | - Margo Nell
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Youmbi T Fonkui
- Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Derek T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
| |
Collapse
|
16
|
Geng P, Ling BY, Zhang HL, Xiong JL, Wang Y, Yu F, Tan DY, Xu JY, Wang HH. Xuebijing Injection Ameliorates H 2S-Induced Acute Respiratory Distress Syndrome by Promoting Claudin-5 Expression. Chin J Integr Med 2021; 28:116-123. [PMID: 34874518 DOI: 10.1007/s11655-021-3344-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the protective effects and underlying mechanisms of Xuebijing Injection (XBJ) on the lung endothelial barrier in hydrogen sulfide (H2S)-induced acute respiratory distress syndrome (ARDS). METHODS Sprague-Dawley rats were exposed to H2S (300 ppm) to establish ARDS model, while human pulmonary microvascular endothelial cells (HPMECs) were incubated with NaHS (a H2S donor, 500 µmol/L) to establish cell model. H2S and XBJ were concurrently administered to the rat and cell models. Lung hematoxylin and eosin staining, immunohistochemistry, transmission electron microscopy and wet/dry ratio measurement were used to confirm ARDS induced by H2S in vivo. The expression levels of claudin-5, phosphorylated protein kinase B (p-AKT)/t-AKT and p-forkhead box transcription factor O1 (FoxO1)/t-FoxO1 in vivo and in vitro were also assessed. Paracellular permeability and transepithelial electrical resistance (TEER) were measured to evaluate endothelial barrier function in the cell model. RESULTS The morphological investigation showed that XBJ attenuated H2S-induced ARDS in rats. XBJ significantly ameliorated both the reduction in TEER and the increased paracellular permeability observed in NaHS-treated HPMECs (P<0.05). The protective effects of XBJ were blocked by LY294002, a phosphatidylinositol 3-kinase (PI3K)/AKT/FoxO1 pathway antagonist (P<0.05). Furthermore, XBJ promoted the expression of claudin-5 and increased the levels of p-AKT and p-FoxO1 in vivo and in vitro (P<0.05). CONCLUSIONS XBJ ameliorated H2S-induced ARDS by promoting claudin-5 expression via the PI3K/AKT/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Ping Geng
- Department of Emergency, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, 225001, China
| | - Bing-Yu Ling
- Department of Emergency, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, 225001, China
| | - Hong-Liang Zhang
- The First Clinical Medical College of Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Jia-Li Xiong
- The First Clinical Medical College of Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Ying Wang
- The First Clinical Medical College of Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Fen Yu
- Department of Emergency, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, 225001, China
| | - Ding-Yu Tan
- Department of Emergency, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, 225001, China
| | - Ji-Yang Xu
- Department of Emergency, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, 225001, China
| | - Hui-Hui Wang
- Department of Emergency, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, 225001, China.
| |
Collapse
|
17
|
4-Hydroxyderricin Promotes Apoptosis and Cell Cycle Arrest through Regulating PI3K/AKT/mTOR Pathway in Hepatocellular Cells. Foods 2021; 10:foods10092036. [PMID: 34574146 PMCID: PMC8468691 DOI: 10.3390/foods10092036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
4-hydroxyderricin (4-HD), as a natural flavonoid compound derived from Angelica keiskei, has largely unknown inhibition and mechanisms on liver cancer. Herein, we investigated the inhibitory effects of 4-HD on hepatocellular carcinoma (HCC) cells and clarified the potential mechanisms by exploring apoptosis and cell cycle arrest mediated via the PI3K/AKT/mTOR signaling pathway. Our results show that 4-HD treatment dramatically decreased the survival rate and activities of HepG2 and Huh7 cells. The protein expressions of apoptosis-related genes significantly increased, while those related to the cell cycle were decreased by 4-HD. 4-HD also down-regulated PI3K, p-PI3K, p-AKT, and p-mTOR protein expression. Moreover, PI3K inhibitor (LY294002) enhanced the promoting effect of 4-HD on apoptosis and cell cycle arrest in HCC cells. Consequently, we demonstrate that 4-HD can suppress the proliferation of HCC cells by promoting the PI3K/AKT/mTOR signaling pathway mediated apoptosis and cell cycle arrest.
Collapse
|
18
|
Sampaio LA, Pina LTS, Serafini MR, Tavares DDS, Guimarães AG. Antitumor Effects of Carvacrol and Thymol: A Systematic Review. Front Pharmacol 2021; 12:702487. [PMID: 34305611 PMCID: PMC8293693 DOI: 10.3389/fphar.2021.702487] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: It is estimated that one in five people worldwide faces a diagnosis of a malignant neoplasm during their lifetime. Carvacrol and its isomer, thymol, are natural compounds that act against several diseases, including cancer. Thus, this systematic review aimed to examine and synthesize the knowledge on the antitumor effects of carvacrol and thymol. Methods: A systematic literature search was carried out in the PubMed, Web of Science, Scopus and Lilacs databases in April 2020 (updated in March 2021) based on the PRISMA 2020 guidelines. The following combination of health descriptors, MeSH terms and their synonyms were used: carvacrol, thymol, antitumor, antineoplastic, anticancer, cytotoxicity, apoptosis, cell proliferation, in vitro and in vivo. To assess the risk of bias in in vivo studies, the SYRCLE Risk of Bias tool was used, and for in vitro studies, a modified version was used. Results: A total of 1,170 records were identified, with 77 meeting the established criteria. The studies were published between 2003 and 2021, with 69 being in vitro and 10 in vivo. Forty-three used carvacrol, 19 thymol, and 15 studies tested both monoterpenes. It was attested that carvacrol and thymol induced apoptosis, cytotoxicity, cell cycle arrest, antimetastatic activity, and also displayed different antiproliferative effects and inhibition of signaling pathways (MAPKs and PI3K/AKT/mTOR). Conclusions: Carvacrol and thymol exhibited antitumor and antiproliferative activity through several signaling pathways. In vitro, carvacrol appears to be more potent than thymol. However, further in vivo studies with robust methodology are required to define a standard and safe dose, determine their toxic or side effects, and clarify its exact mechanisms of action. This systematic review was registered in the PROSPERO database (CRD42020176736) and the protocol is available at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=176736.
Collapse
Affiliation(s)
- Laeza Alves Sampaio
- Graduate Program of Applied Sciences to Health, Federal University of Sergipe, Lagarto, Brazil
| | | | | | | | | |
Collapse
|
19
|
Bayoumi HM, Alkhatib MH, Al-Seeni MN. Carvacrol effect on topotecan cytotoxicity in various human cancer cells in vitro. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e65878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose: To investigate the modulatory effect of the natural phytochemical, carvacrol, on Topotecan (TOPO) cytotoxicity and cellular uptake in different cancer cell lines.
Methods: The cytotoxicity of the carvacrol/TOPO combination therapy was determined in vitro using crystal violet assay. Coomassie blue and DAPI fluorescent stains were used for cellular morphology and molecular cell death assessments, respectively. Additionally, TOPO cellular uptake after carvacrol/TOPO combination therapy was determined.
Results: Treatment of HeLa and HCT116 with carvacrol/TOPO resulted in 7.70- and 5.71-fold reduction in TOPO half maximal inhibitory concentration (IC50), respectively, relative to TOPO single treatment. On the other hand, treatment of MCF-7, HepG2, SKOV3, and A549 cancer cells with carvacrol/TOPO resulted in increasing the IC50 of TOPO by 1.49-, 1.33-, 1.50- and 1.26-fold, respectively, relative to TOPO single treatment.
Conclusion: Carvacrol had enhanced TOPO cytotoxicity and cellular uptake in HeLa and HCT116 cancer cells but might cause TOPO resistance in MCF-7, HepG2, SKOV3 and A549 cells.
Collapse
|
20
|
Li L, He L, Wu Y, Zhang Y. Carvacrol affects breast cancer cells through TRPM7 mediated cell cycle regulation. Life Sci 2020; 266:118894. [PMID: 33310045 DOI: 10.1016/j.lfs.2020.118894] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
As the most prevalent cancer for females, breast cancer is also the second most popular cancer type overall. More efforts are needed to research new drugs and combination therapies for this disease. A naturally derived transient receptor potential melastatin-like 7 channel (TRPM7) inhibitor, carvacrol, was found to have anti-cancer potentials. We hypothesized that carvacrol affects breast cancer cells through TRPM7 mediated cell cycle regulation. Cell viability and apoptosis of breast cancer cell lines BT-483, BT-474, MCF-7, MDA-MB-231, and MDA-MB-453 were determined using the CCK-8 assay and ELISA respectively. TRPM7 in MDA-MB-231, MCF-7 was knocked down. Functional TRPM7 in MDA-MB-231, MCF-7, and HEK293 cells were tested with western blotting, patch-clamp, and fura-2 quench assay. The cell cycle and the regulatory proteins were determined by flow cytometry and western blotting. Results showed that carvacrol inhibited the viability of breast cancer cells with different potency. At 200 μM, MDA-MB-231 was the most sensitive, and MCF-7 was the least sensitive. At >200 μM, the apoptosis was dramatically induced. Carvacrol inhibited TRPM7 functions in MDA-MB-231, MCF-7, and HEK293. Carvacrol at 200 μM increased cells in the G1/G0 phase and decreased cells in the S and G2/M phase by regulating some cyclin proteins in MDA-MB-231. These effects were blocked by the knockdown of TRPM7. This study demonstrated that carvacrol suppresses breast cancer cells by cell cycle regulation and the TRPM7 pathway is one of the pharmacological mechanisms.
Collapse
Affiliation(s)
- Leilei Li
- Department of Thyroid and Breast Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, 471009, China
| | - Liang He
- Department of Thyroid and Breast Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, 471009, China
| | - Yalei Wu
- Department of Thyroid and Breast Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, 471009, China
| | - Yanwu Zhang
- Department of Breast Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, 471009, China.
| |
Collapse
|
21
|
Carvacrol: An In Silico Approach of a Candidate Drug on HER2, PI3K α, mTOR, hER- α, PR, and EGFR Receptors in the Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8830665. [PMID: 33163084 PMCID: PMC7607278 DOI: 10.1155/2020/8830665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Carvacrol is a phenol monoterpene found in aromatic plants specially in Lamiaceae family, which has been evaluated in an experimental model of breast cancer. However, any proposed mechanism based on its antitumor effect has not been reported. In our previous study, carvacrol showed a protective effect on 7,12-dimethylbenz[α]anthracene- (DMBA-) induced breast cancer in female rats. The main objective in this research was to evaluate by using in silico study the carvacrol on HER2, PI3Kα, mTOR, hER-α, PR, and EGFR receptors involved in breast cancer progression by docking analysis, molecular dynamic, and drug-likeness evaluation. A multilevel computational study to evaluate the antitumor potential of carvacrol focusing on the main targets involved in the breast cancer was carried out. The in silico study starts with protein-ligand docking of carvacrol followed by ligand pathway calculations, molecular dynamic simulations, and molecular mechanics energies combined with the Poisson-Boltzmann (MM/PBSA) calculation of the free energy of binding for carvacrol. As result, the in silico study led to the identification of carvacrol with strong binding affinity on mTOR receptor. Additionally, in silico drug-likeness index for carvacrol showed a good predicted therapeutic profile of druggability. Our findings suggest that mTOR signaling pathway could be responsible for its preventive effect in the breast cancer.
Collapse
|