1
|
Zhou YL, Wu J, Wang HL, Feng WW, Peng F, Zhang RQ, Yan HL, Liu J, Tan YZ, Peng C. Fuzi lizhong pills alter microbial community compositions and metabolite profiles in ulcerative colitis rat with spleen-kidney yang deficiency syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118645. [PMID: 39089661 DOI: 10.1016/j.jep.2024.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic inflammatory bowel condition that is frequently related with Spleen-Kidney Yang Deficiency Syndrome (SKYD) in Chinese medicine. Fuzi Lizhong Pill (FLZP), a traditional medicine for SKYD, has been utilized in China for generations, although the exact mechanism by which it treats UC is unknown. AIM OF THE STUDY The goal of this study is to further understand FLZP's therapeutic mechanism in SKYD-associated UC. MATERIALS AND METHODS To investigate the impact of FLZP on SKYD-associated UC, we used a comprehensive method that included serum metabolomics and gut microbiota profiling. The chemical composition of FLZP was determined using mass spectrometry. UC rats with SKYD were induced and treated with FLZP. Serum metabolomics and 16S rRNA microbial community analysis were used to evaluate FLZP's effects on endogenous metabolites and gut microbiota, respectively. Correlation analysis investigated the association between metabolites and intestinal flora. A metabolic pathway analysis was undertaken to discover putative FLZP action mechanisms. RESULTS FLZP contains 109 components, including liquiritin (584.8176 μg/g), benzoylaconine (16.3087 μg/g), benzoylhypaconine (31.9583), and hypaconitine (8.1160 μg/g). FLZP predominantly regulated seven metabolites and eight metabolic pathways involved in amino acid and nucleotide metabolism, with an emphasis on energy metabolism and gastrointestinal digestion. FLZP also influenced intestinal flora variety, increasing probiotic abundance while decreasing pathogenic bacteria prevalence. An integrated investigation identified associations between changes in certain gut flora and energy metabolism, specifically the tricarboxylic acid (TCA) cycle. CONCLUSIONS FLZP successfully cures UC in SKYD rats by regulating amino acid and energy metabolism. Its positive effects may include altering microbiota composition and metabolite profiles in UC rats with SKYD. These findings shed light on FLZP's mode of action and its implications for UC management.
Collapse
Affiliation(s)
- Yin-Lin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Pharmacy Department, Zigong Traditional Chinese Medicine Hospital, 643011, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Liang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wu-Wen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610065, China.
| | - Ruo-Qi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ling Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu-Zhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Ren S, Ren C, Zhao Y, Niu H, Xie Y. Comprehensive fecal metabolomics and gut microbiota study of the protective mechanism of herbal pair Polygonum hydropiper-Coptis chinensis in rats with stress-induced gastric mucosal damage. Front Pharmacol 2024; 15:1435166. [PMID: 39193339 PMCID: PMC11347758 DOI: 10.3389/fphar.2024.1435166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction: Stress-related gastric mucosal lesions (SGMLs) are the most common complication in critical care patients. Previous studies have demonstrated that herbal pair (HP), Polygonum hydropiper-Coptis chinensis (HP P-C) has the anti-SGML effect. However, the underlying mechanism of HP P-C against SGML remains elusive. This study aimed to elucidate how HP P-C extracts exert their protective effects on SGML by examining the role of gut microbiota and metabolites. Methods: SD rats were pretreated with different doses of HP P-C extracts for 6 days, followed by inducing SGML with water-immersion restraint stress (WIRS). After a comprehensive evaluation of serum and gastric tissue indicators in rats, 16S rRNA sequencing and metabolomics analyses were conducted to assess the impact of HP P-C on the fecal microorganisms and metabolites and their correlation. Results: Animal experiment suggested that pretreatment with HP P-C effectively reduced the gastric mucosal lesions, remarkably increased superoxide dismutase (SOD) activity in SGML model rats induced by WIRS. 16S rRNA sequencing analysis showed that HP P-C altered the composition of gut microbiota by raising the abundance of Lactobacillus and Akkermansia. In addition, metabolomics data identified seventeen main differential metabolites related to WIRS-induced gastric mucosal injury, primarily involving in tyrosine metabolism and betalain biosynthesis. HP P-C was found to regulate tyrosine metabolism and betalain biosynthesis by down-regulating the tyramine, L-tyrosine and L-dopa and up -regulating the gentisic acid and dopaquinone. Conclusion: Taken together, this study indicated that HP P-C could effectively protect against WIRS-induced gastric mucosal lesions by modulating intestinal flora and metabolites.
Collapse
Affiliation(s)
- Shouzhong Ren
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| | - Chenhui Ren
- School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Yamei Zhao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| | - Haiyan Niu
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yiqiang Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
3
|
Ding K, Sun E, Huang R, Heng W, Li X, Liu J, Zhao J, Li C, Feng L, Jia X. Integrated metabolome-microbiome analysis investigates the different regulations of Pudilan Xiaoyan oral liquid in young rats with acute pharyngitis compared to adult rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155037. [PMID: 37611464 DOI: 10.1016/j.phymed.2023.155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Pudilan Xiaoyan Oral Liquid (PDL) is a famous traditional Chinese prescription recorded in the Chinese Pharmacopeia, which is widely used to treat inflammatory diseases of the respiratory tract in children and adults. However, the endogenous changes in children and adults with PDL in the treatment of acute pharyngitis remain unclear. PURPOSE The differential regulatory roles of PDL in endogenous metabolism and gut microbes in young and adult rats were investigated with a view to providing a preclinical data reference for PDL in medication for children. METHODS An acute pharyngitis model was established, and serum levels of inflammatory factors and histopathology were measured. This study simulated the growth and development of children in young rats and explored the endogenous metabolic characteristics and intestinal microbial composition after the intervention of PDL by using serum metabolomic technique and 16S rRNA high-throughput sequencing technique. RESULTS The results showed that PDL had therapeutic effects on young and adult rats with acute pharyngitis. Sixteen biomarkers were identified by metabolomics in the serum of young rats and 23 in adult rats. PDL can also affect intestinal microbial diversity and community richness in young and adult rats. Alloprevotella, Allobaculum, Alistipes, Bifidobacterium, and Enterorhabdus were prominent bacteria in young rats. Bacteria from the phylum Firmicutes of the adult rats changed more significantly under the treatment of PDL. In young rats, amino acid metabolism was the primary regulatory mode of PDL, whereas, in adult rats, glycerophospholipid metabolism was studied. CONCLUSION The regulation of PDL on the serum metabolite group and intestinal microflora in young rats was different from that in adult rats, indicating the necessity of an independent study on children's medication. PDL may also exert therapeutic effects on young and adult rats by regulating gut microbial homeostasis. The results support the clinical application of PDL.
Collapse
Affiliation(s)
- Ke Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - E Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Ran Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wangqin Heng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xuan Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Jun Liu
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Chao Li
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing 225400, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
4
|
Wang L, Zhang H, Tang F, Yan H, Feng W, Liu J, Wang Y, Tan Y, Chen H. Therapeutic Effects of Valeriana jatamansi on Ulcerative Colitis: Insights into Mechanisms of Action through Metabolomics and Microbiome Analysis. J Proteome Res 2023; 22:2669-2682. [PMID: 37475705 DOI: 10.1021/acs.jproteome.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Ulcerative colitis (UC), belonging to inflammatory bowel disease (IBD), is a chronic and relapsing inflammatory disorder of the gastrointestinal tract, which has not been completely cured in patients so far. Valeriana jatamansi is a Chinese medicine used clinically to treat "diarrhea," which is closely related to UC. This study was to elucidate the therapeutic effects of V. jatamansi extract (VJE) on dextran sodium sulfate (DSS)-induced UC in mice and its underlying mechanism. In this work, VJE effectively ameliorates the symptoms and histopathological scores and reduces the production of inflammatory factors in UC mice. The colon untargeted metabolomics analysis and 16S rDNA sequencing showed remarkable differences in colon metabolite profiles and intestinal microbiome composition between the control and DSS groups, and VJE intervention can reduce these differences. Thirty-two biomarkers were found and modulated the primary pathways including pyrimidine metabolism, arginine biosynthesis, and glutathione metabolism. Meanwhile, twelve significant taxa of gut microbiota were found. Moreover, there is a close relationship between endogenous metabolites and intestinal flora. These findings suggested that VJE ameliorates UC by inhibiting inflammatory factors, recovering intestinal maladjustment, and regulating the interaction between intestinal microbiota and host metabolites. Therefore, the intervention of V. jatamansi is a potential therapeutic treatment for UC.
Collapse
Affiliation(s)
- Lixia Wang
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Hai Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Hongling Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wuwen Feng
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Juan Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Hulan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
5
|
Chen Y, Xiang Q, Peng F, Gao S, Yu L, Tang Y, Yang Z, Pu W, Xie X, Peng C. The mechanism of action of safflower total flavonoids in the treatment of endometritis caused by incomplete abortion based on network pharmacology and 16S rDNA sequencing. JOURNAL OF ETHNOPHARMACOLOGY 2023:116639. [PMID: 37201664 DOI: 10.1016/j.jep.2023.116639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Safflower is a traditional Chinese medicine used for treating gynaecological diseases. However, its material basis and mechanism of action in the treatment of endometritis induced by incomplete abortion are still unclear. AIM OF THE STUDY This study aimed to reveal the material basis and mechanism of action of safflower in the treatment of endometritis induced by incomplete abortion through comprehensive methods, including network pharmacology and 16S rDNA sequencing. MATERIALS AND METHODS Network pharmacology and molecular docking methods were used to screen the main active components and potential mechanisms of action of safflower in the treatment of endometritis induced by incomplete abortion in rats. A rat model of endometrial inflammation by incomplete abortion was established. The rats were treated with safflower total flavonoids (STF) based on forecasting results, serum levels of inflammatory cytokines were analysed, and immunohistochemistry, Western blots, and 16S rDNA sequencing were performed to investigate the effects of the active ingredient and the treatment mechanism. RESULTS The network pharmacology prediction results showed 20 active components with 260 targets in safflower, 1007 targets related to endometritis caused by incomplete abortion, and 114 drug-disease intersecting targets, including TNF, IL6, TP53, AKT1, JUN, VEGFA, CASP3 and other core targets, PI3K/AKT, MAPK and other signalling pathways may be closely related to incomplete abortion leading to endometritis. The animal experiment results showed that STF could significantly repair uterine damage and reduce the amount of bleeding. Compared with the model group, STF significantly down-regulated the levels of pro-inflammatory factors (IL-6, IL-1β, NO, TNF-α) and the expression of JNK, ASK1, Bax, caspase3, and caspase11 proteins. At the same time, the levels of anti-inflammatory factors (TGF-β and PGE2) and the protein expression of ERα, PI3K, AKT, and Bcl2 were up-regulated. Significant differences in the intestinal flora were seen between the normal group and the model group, and the intestinal flora of the rats was closer to the normal group after the administration of STF. CONCLUSIONS The characteristics of STF used in the treatment of endometritis induced by incomplete abortion were multi-targeted and involved multiple pathways. The mechanism may be related to the activation of the ERα/PI3K/AKT signalling pathway by regulating the composition and ratio of the gut microbiota.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; School of Pharmacy, West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunli Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhou Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Wei Pu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, 611137, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Liu J, Wang X, Li Q, Piao C, Fan Z, Zhang Y, Yang S, Wu X. Fecal metabolomics combined with 16S rRNA gene sequencing to analyze the effect of Jiaotai pill intervention in type 2 diabetes mellitus rats. Front Nutr 2023; 10:1135343. [PMID: 37229468 PMCID: PMC10203393 DOI: 10.3389/fnut.2023.1135343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
The occurrence and development of type 2 diabetes mellitus (T2DM) are closely related to gut microbiota. Jiaotai pill (JTP) is used to treat type 2 diabetes mellitus, with definite efficacy in clinical practice. However, it is not clear whether the therapeutic effect is produced by regulating the changes in gut microbiota and its metabolism. In this study, T2DM rat models were established by a high-fat diet and low-dose streptozotocin (STZ). Based on the pharmacodynamic evaluation, the mechanism of JTP in the treatment of type 2 diabetes mellitus was investigated by fecal metabolism and 16S rRNA gene sequencing. The results showed that JTP decreased blood glucose (FBG, HbA1c) and blood lipid (TC, TG, and LDL) levels and alleviated insulin resistance (FINS, IL-10) in T2DM rats. 16S rRNA gene sequencing results revealed that JTP increased microbiota diversity and reversed the disorder of gut microbiota in T2DM rats, and therefore achieved the therapeutic effect in T2DM. JTP regulated 13 differential flora, which were Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Eubacteriaceae, Prevotellaceae, Ruminococcaceae, Clostridium_IV, Clostridium_XlVa, Eubacterium, Fusicatenibacter, Romboutsia, and Roseburia. Metabolomics analysis showed that JTP interfered with 13 biomarkers to play a therapeutic role in type 2 diabetes mellitus. They were L-Valine, Choline, L-Aspartic acid, Serotonin, L-Lysine, L-Histidine, 3-Hydroxybutyric acid, Pyruvic acid, N-Acetylornithine, Arachidonic acid, L-Tryptophan, L-Alanine, and L-Methionine. KEGG metabolic pathway analysis of the above differential metabolites and gut microbiota by using the MetaboAnalyst database and Picrust software. It was found that JTP treated type 2 diabetes mellitus by affecting metabolic pathways such as amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Spearman correlation analysis revealed high correlations for 7 pharmacological indicators, 12 biomarkers, and 11 gut microbiota. In this study, the therapeutic effect and potential mechanism of JTP on type 2 diabetes mellitus were preliminarily demonstrated by gut microbiota and metabolomics, which could provide a theoretical basis for the treatment of T2DM with JTP.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Wang
- Good Laboratory Practice of Drug, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiyao Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengyu Piao
- Good Laboratory Practice of Drug, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zuowang Fan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yao Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Saisai Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiuhong Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Li L, Du Y, Wang Y, He N, Wang B, Zhang T. Atractylone Alleviates Ethanol-Induced Gastric Ulcer in Rat with Altered Gut Microbiota and Metabolites. J Inflamm Res 2022; 15:4709-4723. [PMID: 35996682 PMCID: PMC9392477 DOI: 10.2147/jir.s372389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Gastric ulcer (GU) is the most common multifactor gastrointestinal disorder affecting millions of people worldwide. There is evidence that gut microbiota is closely related to the development of GU. Atractylone (ATR) has been reported to possess potential biological activities, but research on ATR alleviating GU injury is unprecedented. Methods Helicobacter pylori (H. pylori)-induced GU model in zebrafish and ethanol-induced acute GU model in rat were established to evaluate the anti-inflammatory and ulcer inhibitory effects of ATR. Then, 16S rRNA sequencing and metabolomics analysis were performed to investigate the effect of ATR on the microbiota and metabolites in rat feces and their correlation. Results Therapeutically, ATR inhibited H. pylori-induced gastric mucosal injury in zebrafish. In the ulceration model of rat, ATR mitigated the gastric lesions damage caused by ethanol, decreased the ulcer area, and reduced the production of inflammatory factors. Additionally, ATR alleviated the gastric oxidative stress injury by increasing the activity of superoxide dismutase (SOD) and decreasing the level of malondialdehyde (MDA). Furthermore, ATR played a positive role in relieving ulcer through reshaping gut microbiota composition including Parabacteroides and Bacteroides and regulating the levels of metabolites including amino acids, short-chain fatty acids (SCFAs), and bile acids. Conclusion Our work sheded light on the mechanism of ATR treating GU from the perspective of the gut microbiota and explored the correlation between gut microbiota, metabolites, and host phenotype.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yang Wang
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd, Shanghai, People’s Republic of China
| | - Ning He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai, People’s Republic of China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Gao Y, Liu L, Li C, Liang YT, Lv J, Yang LF, Zhao BN. Study on the Antipyretic and Anti-inflammatory Mechanism of Shuanghuanglian Oral Liquid Based on Gut Microbiota-Host Metabolism. Front Pharmacol 2022; 13:843877. [PMID: 35837285 PMCID: PMC9273999 DOI: 10.3389/fphar.2022.843877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nowadays, there has been increased awareness that the therapeutic effects of natural medicines on inflammatory diseases may be achieved by regulating the gut microbiota. Shuanghuanglian oral liquid (SHL), the traditional Chinese medicine preparation, has been shown to be effective in clearing heat-toxin, which is widely used in the clinical treatment of respiratory tract infection, mild pneumonia, and common cold with the wind-heat syndrome. Yet the role of gut microbiota in the antipyretic and anti-inflammatory effects is unclear. In this study, a new strategy of the 16S rRNA gene sequencing and serum metabolomics that aims to explore the role of SHL in a rat model of the systemic inflammatory response induced by lipopolysaccharide would be a major advancement. Our results showed that the gut microbiota structure was restored in rats with inflammation after oral administration of SHL, thereby reducing inflammation. Specifically, SHL increased the relative abundance of Bacteroides and Faecalibacterium and decreased the abundance of Bifidobacterium, Olsenella, Aerococcus, Enterococcus, and Clostridium in the rat model of inflammatory disease. Serum metabolomic profile obtained by the orbitrap-based high-resolution mass spectrometry revealed significant differences in the levels of 39 endogenous metabolites in the inflammatory model groups, eight metabolites of which almost returned to normal levels after SHL treatment. Correlation analysis between metabolite, gut microbiota, and inflammatory factors showed that the antipyretic and anti-inflammatory effects of SHL were related to the recovery of the abnormal levels of the endogenous metabolites (N-acetylserotonin and 1-methylxanthine) in the tryptophan metabolism and caffeine metabolism pathway. Taken together, these findings suggest that the structural changes in the gut microbiota are closely related to host metabolism. The regulation of gut microbiota structure and function is of great significance for exploring the potential mechanism in the treatment of lipopolysaccharide-induced inflammatory diseases with SHL.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo-Nian Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|