1
|
Wang Y, Zheng AN, Yang H, Wang Q, Dai B, Wang JJ, Wan YT, Liu ZB, Liu SY. Olfactory Three-Needle Electroacupuncture Improved Synaptic Plasticity and Gut Microbiota of SAMP8 Mice by Stimulating Olfactory Nerve. Chin J Integr Med 2024; 30:729-741. [PMID: 37999886 DOI: 10.1007/s11655-023-3614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To investigate the effects and mechanisms of olfactory three-needle (OTN) electroacupuncture (EA) stimulation of the olfactory system on cognitive dysfunction, synaptic plasticity, and the gut microbiota in senescence-accelerated mouse prone 8 (SAMP8) mice. METHODS Thirty-six SAMP8 mice were randomly divided into the SAMP8 (P8), SAMP8+OTN (P8-OT), and SAMP8+nerve transection+OTN (P8-N-OT) groups according to a random number table (n=12 per group), and 12 accelerated senescence-resistant (SAMR1) mice were used as the control (R1) group. EA was performed at the Yintang (GV 29) and bilateral Yingxiang (LI 20) acupoints of SAMP8 mice for 4 weeks. The Morris water maze test, transmission electron microscopy, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, Nissl staining, Golgi staining, Western blot, and 16S rRNA sequencing were performed, respectively. RESULTS Compared with the P8 group, OTN improved the cognitive behavior of SAMP8 mice, inhibited neuronal apoptosis, increased neuronal activity, and attenuated hippocampal synaptic dysfunction (P<0.05 or P<0.01). Moreover, the expression levels of synaptic plasticity-related proteins N-methyl-D-aspartate receptor 1 (NMDAR1), NMDAR2B, synaptophysin (SYN), and postsynaptic density protein-95 (PSD95) in hippocampus were increased by OTN treatment (P<0.05 or P<0.01). Furthermore, OTN greatly enhanced the brain-derived neurotrophic factor (BDNF)/cAMP-response element binding (CREB) signaling and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling compared with the P8 group (P<0.05 or P<0.01). However, the neuroprotective effect of OTN was attenuated by olfactory nerve truncation. Compared with the P8 group, OTN had a very limited effect on the fecal microbial structure and composition of SAMP8 mice, while specifically increased the genera Oscillospira and Sutterella (P<0.05). Interestingly, the P8-N-OT group showed an abnormal fecal microbiota with higher microbial α-diversity, Firmicutes/Bacteroidetes ratio and pathogenic bacteria (P<0.05 or P<0.01). CONCLUSIONS OTN improved cognitive deficits and hippocampal synaptic plasticity by stimulating the olfactory nerve and activating the BDNF/CREB and PI3K/AKT/mTOR signaling pathways. Although the gut microbiota was not the main therapeutic target of OTN for Alzheimer's disease, the olfactory nerve was essential to maintain the homeostasis of gut microbiota.
Collapse
Affiliation(s)
- Yuan Wang
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - A-Ni Zheng
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712000, China
| | - Huan Yang
- Department of Traditional Chinese Medicine, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, 014040, China
| | - Qiang Wang
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Biao Dai
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Jia-Ju Wang
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Yi-Tong Wan
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Zhi-Bin Liu
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, 712046, China
| | - Si-Yang Liu
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
2
|
Zheng Y, Pan L, He J, Yan J, Xia Y, Lin C, Chen X, Zhao Q, Zeng Q, Julikezi M, Lin X, Li K, Bu Y, Fan Y, Yao L, Zhang M, Chen Y. Electroacupuncture-modulated extracellular ATP levels in prefrontal cortex ameliorated depressive-like behavior of maternal separation rats. Behav Brain Res 2023; 452:114548. [PMID: 37355234 DOI: 10.1016/j.bbr.2023.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/13/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Maternal separation (MS) is a type of early-life stress that has been linked to neuropsychiatric disorders, especially depression. Increasing evidence indicates that the adenosine triphosphate (ATP) level in the prefrontal cortex (PFC) is involved in the pathophysiology of depression. To investigate the potential relationship between ATP in PFC and antidepressant effects of electroacupuncture (EA) treatment, we assessed genes involved in ATP biosynthesis as well as the extracellular ATP levels in a rat model exposed to neonatal MS. Our results demonstrated that reduced expression of ABCG2 (an ATP-binding cassette protein) and ATP levels in the PFC of depressive-like rats exposed to MS can be attenuated by EA stimulus at the Baihui (GV20) and Yintang (GV29) acupoints. Moreover, the antidepressant effect of EA treatment was blocked by administration of suramin, a broad purinergic P2 receptor antagonist. Together, these results suggested that electroacupuncture may be able to modulate extracellular ATP levels in the PFC of depressive-like MS rats, potentially contributing to its antidepressant effects.
Collapse
Affiliation(s)
- Yuanjia Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingyun Pan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiang He
- Acupuncture and moxibustion and tuina college, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yucen Xia
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuqi Lin
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuyun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianyi Zhao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuxiang Zeng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Maidinaimu Julikezi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Lin
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaixin Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Bu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujing Fan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
| |
Collapse
|
3
|
Li N, Wang H, Liu H, Zhu L, Lyu Z, Qiu J, Zhao T, Ren H, Huang L, Chen S, Hu X, Zhou L. The effects and mechanisms of acupuncture for post-stroke cognitive impairment: progress and prospects. Front Neurosci 2023; 17:1211044. [PMID: 37397457 PMCID: PMC10309044 DOI: 10.3389/fnins.2023.1211044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Stroke is one of the important causes of both disability and death worldwide, which is very common in older adults. Post-stroke cognitive impairment (PSCI) is a common secondary damage of stroke, which is the main cause of long-term disability and decreased quality of life in stroke patients, which brings a heavy burden to society and families. Acupuncture, as one of the oldest and widely used worldwide techniques in Chinese medicine, is recommended by the World Health Organization (WHO) as an alternative and complementary strategy for improving stroke care. This review comprehensively summarizes literature from the last 25 years, showing that acupuncture can exert strong beneficial effect on PSCI. The mechanisms of acupuncture on PSCI involves anti-neuronal apoptosis, promoting synaptic plasticity, alleviating central and peripheral inflammatory reactions, and regulating brain energy metabolism disorders (including improving cerebral blood flow, glucose utilization and mitochondrial structure and function, etc.), etc. The effects and mechanisms of acupuncture on PSCI reviewed in this study provides scientific and reliable evidence for acupuncture application for PSCI.
Collapse
Affiliation(s)
- Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Wang
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, Shanxi, China
| | - Hang Liu
- Acupuncture and Moxibustion Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- Acupuncture and Moxibustion Medical Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Lina Zhu
- Acupuncture and Moxibustion Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- Acupuncture and Moxibustion Medical Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Zhongxi Lyu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiwen Qiu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tianyi Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyan Ren
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuwu Hu
- Acupuncture and Moxibustion Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- Acupuncture and Moxibustion Medical Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| | - Liang Zhou
- Acupuncture and Moxibustion Department, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- Acupuncture and Moxibustion Medical Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Wen Q, Hong X, He K, Liu B, Li M. Can acupuncture reverse oxidative stress and neuroinflammatory damage in animal models of vascular dementia?: A preclinical systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e33989. [PMID: 37335660 DOI: 10.1097/md.0000000000033989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Vascular dementia is a cognitive dysfunction syndrome caused by cerebral vascular factors such as ischemic stroke and hemorrhagic stroke. The effect of acupuncture on vascular dementia models is ambiguous, and there is controversy about whether acupuncture has a placebo effect. Oxidative stress and inflammation are the most essential mechanisms in preclinical studies of vascular dementia. However, there is no meta-analysis on the mechanism of vascular dementia in animal models. It is necessary to explore the efficacy of acupuncture through Meta-analysis of preclinical studies. METHODS Three major databases, PubMed, Embase and Web of Science (including medline), were searched in English until December 2022.The quality of the including literature was assessed using SYRCLE's risk of bias tool. Review Manager 5.3 was used to statistically summarize the included studies and the statistical effect values were expressed by SMD. The outcomes included: behavioral tests (escape latency, number of crossings), pathological sections (Nissl and TUNEL staining), oxidative stress markers (ROS, MDA, SOD, GSH-PX) and neuroinflammatory factors (TNF-α, IL-1β, IL-6). RESULTS A total of 31 articles were included in this meta-analysis. The results showed that the escape latency, the contents of ROS, MDA, IL-1β, and IL-6 were decreased, and the contents of SOD and Nissl-positive neurons were increased in the acupuncture group as compared with the non-group (P < .05). Compared with the impaired group, the acupuncture group also had the above advantages (P < .05). In addition, the acupuncture group also increased the number of crossings and GSH-PX content, and decreased the expression of TUNEL-positive neurons and TNF-α (P < .05). CONCLUSIONS From behavioral tests to slices and pathological markers in animal models of vascular dementia, it can be proved that acupuncture is effective in targeting oxidative stress and neuroinflammatory damage, and acupuncture is not a placebo effect. Nevertheless, attention needs to be paid to the gap between animal experiments and clinical applications.
Collapse
Affiliation(s)
- Qin Wen
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Yuangang Street Community Health Service Center, Guangzhou, China
| | - Xueqin Hong
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunze He
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Buping Liu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhang Z, Chen L, Guo Y, Li D, Zhang J, Liu L, Fan W, Guo T, Qin S, Zhao Y, Xu Z, Chen Z. The neuroprotective and neural circuit mechanisms of acupoint stimulation for cognitive impairment. Chin Med 2023; 18:8. [PMID: 36670425 PMCID: PMC9863122 DOI: 10.1186/s13020-023-00707-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Cognitive impairment is a prevalent neurological disorder that burdens families and the healthcare system. Current conventional therapies for cognitive impairment, such as cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists, are unable to completely stop or reverse the progression of the disease. Also, these medicines may cause serious problems with the digestive system, cardiovascular system, and sleep. Clinically, stimulation of acupoints has the potential to ameliorate the common symptoms of a variety of cognitive disorders, such as memory deficit, language dysfunction, executive dysfunction, reduced ability to live independently, etc. There are common acupoint stimulation mechanisms for treating various types of cognitive impairment, but few systematic analyses of the underlying mechanisms in this domain have been performed. This study comprehensively reviewed the basic research from the last 20 years and found that acupoint stimulation can effectively improve the spatial learning and memory of animals. The common mechanism may be that acupoint stimulation protects hippocampal neurons by preventing apoptosis and scavenging toxic proteins. Additionally, acupoint stimulation has antioxidant and anti-inflammatory effects, promoting neural regeneration, regulating synaptic plasticity, and normalizing neural circuits by restoring brain functional activity and connectivity. Acupoint stimulation also inhibits the production of amyloid β-peptide and the phosphorylation of Tau protein, suggesting that it may protect neurons by promoting correct protein folding and regulating the degradation of toxic proteins via the autophagy-lysosomal pathway. However, the benefits of acupoint stimulation still need to be further explored in more high-quality studies in the future.
Collapse
Affiliation(s)
- Zichen Zhang
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Liuyi Chen
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.257143.60000 0004 1772 1285First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Yi Guo
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Dan Li
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Jingyu Zhang
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Ling Liu
- grid.257143.60000 0004 1772 1285First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Wen Fan
- grid.412879.10000 0004 0374 1074Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka City, 5100293 Japan
| | - Tao Guo
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Siru Qin
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Yadan Zhao
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Zhifang Xu
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Zelin Chen
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| |
Collapse
|
6
|
Wang Q, Chen YY, Yang ZC, Yuan HJ, Dong YW, Miao Q, Li YQ, Wang J, Yu JZ, Xiao BG, Ma CG. Grape Seed Extract Attenuates Demyelination in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Inflammatory Response of Immune Cells. Chin J Integr Med 2023; 29:394-404. [PMID: 36607588 DOI: 10.1007/s11655-022-3587-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action. METHODS This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively. RESULTS GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05). CONCLUSION GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.
Collapse
Affiliation(s)
- Qing Wang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yang-Yang Chen
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Zhi-Chao Yang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hai-Jun Yuan
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yi-Wei Dong
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Qiang Miao
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yan-Qing Li
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Jing Wang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Department of Neurology, the First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie-Zhong Yu
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, 037009, China.,Department of Neurology, Datong Fifth People's Hospital, Datong, Shanxi Province, 037009, China
| | - Bao-Guo Xiao
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200000, China
| | - Cun-Gen Ma
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China. .,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, 037009, China.
| |
Collapse
|
7
|
Zhang R, Feng Y, Zhao Z, He Y, Wang D, Wang Q, Pang X, Yao Y, Li J, Sun Z. Effect of electroacupuncture on serum inflammatory cytokines in animal models with rheumatoid arthritis: A systematic review and meta-analysis. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Zhou R, Xiao L, Xiao W, Yi Y, Wen H, Wang H. Bibliometric review of 1992–2022 publications on acupuncture for cognitive impairment. Front Neurol 2022; 13:1006830. [PMID: 36226080 PMCID: PMC9549373 DOI: 10.3389/fneur.2022.1006830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the development context, research hotspots, and frontiers of acupuncture therapy for cognitive impairment (CI) from 1992 to 2022 by visualization analysis. Methods Articles about acupuncture therapy for cognitive impairment were retrieved from the Web of Science Core Collection (WoSCC) until 1 March 2022. Basic information was collected by Excel 2007, and VOSviewer 1.6.17 was used to analyze the co-occurrence of countries, institutes, and authors. Co-citation maps of authors and references were analyzed by CiteSpace V.5.8.R3. In addition, CiteSpace was used to analyze keyword clusters and forecast research frontiers. Results A total of 279 articles were retrieved, including articles from 19 countries, 334 research institutes, and 101 academic journals. The most published country and institutes were the People's Republic of China (217) and the Fujian University of Traditional Chinese Medicine (40). Ronald C Petersen owned the highest co-citations (56). Keywords and co-cited references cluster showed the main research directions in this area, including “ischemic stroke,” “cerebral ischemia/reperfusion,” “mild cognitive impairment,” “Alzheimer's disease,” “vascular dementia,” “vascular cognitive impairment with no dementia,” “multi-infarct dementia,” “synaptic injury,” “functional MRI,” “glucose metabolism,” “NMDA,” “nuclear factor-kappa b pathway,” “neurotrophic factor,” “matrix metalloproteinase-2 (MMP-2),” “tumor necrosis factor-alpha,” “Bax,” “Caspase-3,” and “Noxa”. Trending keywords may indicate frontier topics, such as “randomized controlled trial,” “rat model,” and “meta-analysis.” Conclusion This research provides valuable information for the study of acupuncture. Diseases focus on mild cognitive impairment (MCI), Alzheimer's disease (AD), and vascular dementia (VaD). Tauopathies with hyperphosphorylation of Tau protein as the main lesions also need to be paid attention to. The development of functional magnetic resonance imaging (fMRI) will better explain the therapeutic effect of acupuncture treatment. The effect of acupuncture on a single point is more convincing, and acupuncture on Baihui (GV20) may be needed in the future. Finally, the implementation of high-quality multicenter randomized controlled trials (RCTs) requires increased collaboration among experts from multiple fields and countries.
Collapse
Affiliation(s)
- Runjin Zhou
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Xiao
- Ganzhou Cancer Hospital, Ganzhou, China
- *Correspondence: Lu Xiao
| | - Wei Xiao
- Ganzhou Cancer Hospital, Ganzhou, China
| | - Yanfei Yi
- Ganzhou Cancer Hospital, Ganzhou, China
| | | | | |
Collapse
|
9
|
Jin Y, Hu F, Zhu J. Exploration of acupuncture therapy in the treatment of mild cognitive impairment based on the brain-gut axis theory. Front Hum Neurosci 2022; 16:891411. [PMID: 36204718 PMCID: PMC9531719 DOI: 10.3389/fnhum.2022.891411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023] Open
Abstract
Background Mild cognitive impairment (MCI) is an intermediary state between normal aging and dementia. Early intervention for MCI may be a key opportunity in managing dementia. Recent studies have demonstrated the alterations in the gut microbial communities associated with MCI. This study aims to evaluate if acupuncture can improve cognitive function in subjects with MCI and explore the possible mechanism of acupuncture by better defining the interactions of gut microbiota. Methods A randomized assessor-blind controlled study is proposed. A total of 62 subjects will be recruited and randomly allocated into two groups in a 1:1 ratio: the treatment and control groups. Participants in the treatment group will receive active acupuncture and exercise/cognitive training (conventional treatment). The control group will receive sham acupuncture and exercise/cognitive training. Each participant will receive active or sham acupuncture for 12 weeks. The primary outcome will be the Montreal Cognitive Assessment (MoCA) score and intestinal flora. Secondary outcomes will include mini-mental state examination (MMSE) and activity of daily living (ADL) scores. Various scales will be collected at baseline, during the treatment (weeks 4 and 8), week 12, and months 4 and 6 after the intervention. Feces will be collected before and after the treatment based on 16S rRNA gene sequencing technology for each participant to characterize the intestinal flora. Adverse events will be recorded by monthly follow-up. Results The trial is expected to show that cognitive function can be improved by acupuncture and produce reliable clinical outcomes in MCI patients. It will also provide preliminary data on the possible mechanism based on the changes in the intestinal flora. Collected data will be used to support future large-scale fundamental studies. Conclusion Acupuncture is an effective method to improve cognitive function for MCI. This study will provide data on the relationship between gut microbiota and the effectiveness of acupuncture in patients with MCI from a new angle. Clinical trial registration [www.ClinicalTrials.gov], identifier [MR-33-22-002376].
Collapse
Affiliation(s)
- Yuanyuan Jin
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, Hangzhou, China
| | - Fen Hu
- Department of Acupuncture and Moxibustion, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfang Zhu
- Department of Acupuncture and Moxibustion, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
10
|
Li G, Shi Y, Zhang L, Yang C, Wan T, Lv H, Jian W, Li J, Li M. Efficacy of acupuncture in animal models of vascular dementia: A systematic review and network meta-analysis. Front Aging Neurosci 2022; 14:952181. [PMID: 36062145 PMCID: PMC9434110 DOI: 10.3389/fnagi.2022.952181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022] Open
Abstract
Background and purpose Acupuncture is widely used in clinical practice for the treatment of vascular diseases. However, the protocol, efficacy, and mechanism of acupuncture in animal models of vascular dementia are still controversial. Based on the above problems, we initiated this comprehensive study. Methods To analyze the literatures included in this study, 4 databases were searched and the SYRCLE's Risk of bias tool was employed. To perform the subgroup analysis of different acupuncture methods and the Review Manager 5.3 was applied. Meanwhile, the pairwise and network meta-analysis were conducted using Addis 1.16.8. The outcomes included escape latency, number of crossings, time spent in the target quadrant, and swimming speed. Results Forty-two studies with a total of 1,486 animals were included in this meta-analysis. According to the results from subgroup analysis, GV20 + ST36 (Baihui + bilateral Zusanli) combined with 14-day manual acupuncture can obtain best improvement of the rats cognitive function among all acupuncture regimens (MD: -23.41; 95%CI: -26.66, -20.15; I2 = 0%; P < 0.001). The heterogeneity of other acupuncture treatments was significantly higher than that of GV20 + ST36, because the treatment courses were not uniform. Pair-wise and network comparisons are highly consistent. The major results of the network meta-analysis were as follows, In comparison to the impaired group, the acupuncture group showed significantly reduced escape latency (MD: -25.87; 95%CI: -30.75, -21.12), increased number of original platform crossings (MD: 2.63; 95%CI: 1.94, 3.34) and time spent in the target quadrant (MD: 7.88; 95%CI: 4.25, 11.44). The overall results of the network meta-analysis are as follows: the normal and sham-operated groups performed the best, followed by medicine and acupuncture, while no effect was found in the impaired group treated with non-acupoint and palliative. Conclusions Acupuncture significantly improves cognitive function in rats with vascular dementia. Compared to other acupuncture plans, (GV20 + ST36, MA) and 14 -day manual acupuncture can be used to obtain better results. The main mechanism of acupuncture in the treatment of vascular dementia is reduced oxidative stress, neuronal inflammation, and apoptosis, as well as the increased synaptic plasticity and neurotransmitters. Systematic review registration https://inplasy.com/inplasy-2021-11-0036/, identifier: INPLASY2021110036.
Collapse
Affiliation(s)
- Guangyao Li
- Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuling Shi
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Hospital of Traditional Chinese Medicine), Guangzhou, China
| | - Lu Zhang
- Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanghui Yang
- Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hang Lv
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenxuan Jian
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinghu Li
- Department of Massage, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Li
- Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|