1
|
Astaneh ME, Fereydouni N. Silver Nanoparticles in 3D Printing: A New Frontier in Wound Healing. ACS OMEGA 2024; 9:41107-41129. [PMID: 39398164 PMCID: PMC11465465 DOI: 10.1021/acsomega.4c04961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
This review examines the convergence of silver nanoparticles (AgNPs), three-dimensional (3D) printing, and wound healing, focusing on significant advancements in these fields. We explore the unique properties of AgNPs, notably their strong antibacterial efficacy and their potential applications in enhancing wound recovery. Furthermore, the review delves into 3D printing technology, discussing its core principles, various materials employed, and recent innovations. The integration of AgNPs into 3D-printed structures for regenerative medicine is analyzed, emphasizing the benefits of this combined approach and identifying the challenges that must be addressed. This comprehensive overview aims to elucidate the current state of the field and to direct future research toward developing more effective solutions for wound healing.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
2
|
Wang L, Yong LX, Loo SCJ. Utilizing Food Waste in 3D-Printed PLA Formulations to Achieve Sustainable and Customizable Controlled Delivery Systems. ACS OMEGA 2024; 9:34140-34150. [PMID: 39130598 PMCID: PMC11307293 DOI: 10.1021/acsomega.4c05155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
This is the first study that explores blending polylactic acid (PLA) with various biomasses, including food wastes-brewer's spent grain (BSG), spent coffee grounds (SCG), sesame cake (SC), and thermoplastic starch (TPS) biomass to create composite gastric floating drug delivery systems (GFDDS) through 3D printing. The aim is to investigate the influence of biomass percentage, biomass type, and printing parameters on their corresponding drug release profiles. 3D-printed (3DP) composite filaments were prepared by blending biomasses and PLA before in vitro drug release studies were performed using hydrophilic and hydrophobic model drugs, metoprolol tartrate (MT), and risperidone (RIS). The data revealed that release profiles were influenced by composite compositions and wall thicknesses of 3DP GFDDS capsules. Up to 15% of food waste could be blended with PLA for all food waste types tested. Delivery studies for PLA-food wastes found that MT was fully released by 4 h, exhibiting burst release profiles after a lag time of 0.5 to 1.5 h, and RIS could achieve a sustained release profile of approximately 48 h. PLA-TPS was utilized as a comparison and demonstrated variable release profiles ranging from 8 to 120 h, depending on the TPS content. The results demonstrated the potential for adjusting drug release profiles by incorporating affordable biomasses into GFDDS. This study presents a promising direction for creating delivery systems that are sustainable, customizable, and cost-effective, utilizing sustainable materials that can also be employed for agricultural, nutraceutical, personal care, and wastewater treatment applications.
Collapse
Affiliation(s)
- Liwen Wang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Ling Xin Yong
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Say Chye Joachim Loo
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798 Singapore
- Lee
Kong Chian School of Medicine, Nanyang Technological
University, 59 Nanyang
Drive, 636921 Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
3
|
Kennedy SM, K A, J JJB, V E, Rb JR. Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations. J Med Eng Technol 2024; 48:151-168. [PMID: 39282861 DOI: 10.1080/03091902.2024.2399017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 10/10/2024]
Abstract
This paper delves into the diverse applications and transformative impact of additive manufacturing (AM) in biomedical engineering. A detailed analysis of various AM technologies showcases their distinct capabilities and specific applications within the medical field. Special emphasis is placed on bioprinting of organs and tissues, a revolutionary area where AM has the potential to revolutionize organ transplantation and regenerative medicine by fabricating functional tissues and organs. The review further explores the customization of implants and prosthetics, demonstrating how tailored medical devices enhance patient comfort and performance. Additionally, the utility of AM in surgical planning is examined, highlighting how printed models contribute to increased surgical precision, reduced operating times, and minimized complications. The discussion extends to the 3D printing of surgical instruments, showcasing how these bespoke tools can improve surgical outcomes. Moreover, the integration of AM in drug delivery systems, including the development of innovative drug-loaded implants, underscores its potential to enhance therapeutic efficacy and reduce side effects. It also addresses personalized prosthetic implants, regulatory frameworks, biocompatibility concerns, and the future potential of AM in global health and sustainable practices.
Collapse
Affiliation(s)
- Senthil Maharaj Kennedy
- Department of Mechanical Engineering, AAA College of Engineering and Technology, Sivakasi, India
| | - Amudhan K
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India
| | - Jerold John Britto J
- Department of Mechanical Engineering, Ramco Institute of Technology, Rajapalayam, India
| | - Ezhilmaran V
- Department of Manufacturing Engineering, Anna University, Chennai, India
| | - Jeen Robert Rb
- Department of Mechanical Engineering, Sri Krishna College of Technology, Coimbatore, India
| |
Collapse
|
4
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
5
|
Flexibility of Diels-Alder reversible covalent bonds in fused deposition modeling 3D printing: Bonding and de-bonding. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Long L, Xu K, Bing Tan K, Cai D, Yang Y, Zhou SF, Zhan G. Highly Active Mn-Cu Bimetallic Oxide Catalyst Assembled as 3D-printed Monolithic Agitating Paddles for Advanced Oxidation Process. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Mohd Sabee MMS, Ahmad Tajuddin NNI, Ku Ishak KM, Rusli A, Abdullah MK, Shafiq MD, Shuib RK, Abdul Hamid ZA. Comparison of physical and mechanical properties of biodegradable polybutylene adipate terephthalate, polycaprolactone, and poly(lactic acid) fabricated via fused deposition modeling and conventional molding. J Appl Polym Sci 2022. [DOI: 10.1002/app.52973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohd Meer Saddiq Mohd Sabee
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Nurul Nabilah Izzah Ahmad Tajuddin
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Ku Marsila Ku Ishak
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Arjulizan Rusli
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Muhammad Khalil Abdullah
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Mohamad Danial Shafiq
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Raa Khimi Shuib
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| | - Zuratul Ain Abdul Hamid
- Biomaterials Research Niche Group, School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Nibong Tebal Pulau Pinang Malaysia
| |
Collapse
|
8
|
Guo J, Li Y, Gao Z, Lyu J, Liu W, Duan Y, Zhou L, Gu Q. 3D printed controllable microporous scaffolds support embryonic development in vitro. J Cell Physiol 2022; 237:3408-3420. [PMID: 35699648 PMCID: PMC9545995 DOI: 10.1002/jcp.30810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
Little is known about the complex molecular and cellular events occurring during implantation, which represents a critical step for pregnancy. The conventional 2D culture could not support postimplantation embryos' normal development, and 3D conditions shed light into the “black box”. 3D printing technology has been widely used in recapitulating the structure and function of native tissues in vitro. Here, we 3D printed anisotropic microporous scaffolds to culture embryos by manipulating the advancing angle between printed layers, which affected embryo development. The 30° and 60° scaffolds promote embryo development with moderate embryo‐scaffold attachments. T‐positive cells and FOXA2‐positive cells were observed to appear in the posterior region of the embryo and migrated to the anterior region of the embryo on day 7. These findings demonstrate a 3D printed stand that supports embryonic development in vitro and the critical role of 3D architecture for embryo implantation, in which additive manufacturing is a versatile tool.
Collapse
Affiliation(s)
- Jia Guo
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Li
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Department of Nephrology, Postdoctoral Workstation, Precision Medicine Center of Shanxi Provincial People's Hospital, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Kidney Disease Institute, Taiyuan, China
| | - Zili Gao
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiawei Lyu
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenli Liu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongchao Duan
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lixun Zhou
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Gu
- The State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
A Semi-Automated 3D-Printed Chainmail Design Algorithm with Preprogrammed Directional Functions for Hand Exoskeleton. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The problem of computerising the design and development of 3D-printed chainmail with programmed directional functions provides a basis for further research, including the automation of medical devices. The scope of the present research was focused on computational optimisation of the selection of materials and shapes for 3D printing, including the design of medical devices, which constitutes a significant scientific, technical, and clinical problem. The aim of this article was to solve the scientific problem of automated or semi-automated efficient and practical design of 3D-printed chainmail with programmed directional functions (variable stiffness/elasticity depending on the direction). We demonstrate for the first time that 3D-printed particles can be arranged into single-layer chainmail with a tunable one- or two-directional bending modulus for use in a medical hand exoskeleton. In the present work, we accomplished this in two ways: based on traditional programming and based on machine learning. This paper presents the novel results of our research, including 3D printouts, providing routes toward the wider implementation of adaptive chainmails. Our research resulted in an automated or semi-automated efficient and practical 3D printed chainmail design with programmed directional functions for a wrist exoskeleton with variable stiffness/flexibility, depending on the direction. We also compared two methodologies of planning and construction: the use of traditional software and machine-learning-based software, with the latter being more efficient for more complex chainmail designs.
Collapse
|
10
|
Ji Y, Park J, Kang Y, Lee S, Ju H, Choi S, Lee B, Kim M. Scaffold printing using biodegradable poly(1,4-butylene carbonate) ink: printability, in vivo physicochemical properties, and biocompatibility. Mater Today Bio 2021; 12:100129. [PMID: 34604731 PMCID: PMC8463913 DOI: 10.1016/j.mtbio.2021.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
This study is the first to assess the applicability of biodegradable poly(1,4-butylene carbonate) (PBC) as a printing ink for fused deposition modeling (FDM). Here, PBC was successfully prepared via the bulk polycondensation of 1,4-butanediol and dimethyl carbonate. PBC was melted above 150°C in the heating chamber of an FDM printer, after which it flowed from the printing nozzle upon applying pressure and solidified at room temperature to create a three-dimensional (3D) scaffold structure. A 3D scaffold exactly matching the program design was obtained by controlling the temperature and pressure of the FDM printer. The compressive moduli of the printed PBC scaffold decreased as a function of implantation time. The printed PBC scaffold exhibited good in vitro biocompatibility, as well as in vivo neotissue formation and little host tissue response, which was proportional to the gradual biodegradation. Collectively, our findings demonstrated the feasibility of PBC as a suitable printing ink candidate for the creation of scaffolds via FDM printing.
Collapse
Affiliation(s)
- Y.B. Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - J.Y. Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Y. Kang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - S. Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - H.J. Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - S. Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - B.Y. Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - M.S. Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- Research Institute Center, Medipolymers, Research Institute, Suwon 16522, South Korea
| |
Collapse
|
11
|
Song WL, Ma HO, Nan Y, Li YJ, Qi N, Zhang LY, Xu X, Wang YY. Prenatal diagnosis of isolated lateral facial cleft by ultrasonography and three-dimensional printing: A case report. World J Clin Cases 2021; 9:7196-7204. [PMID: 34540978 PMCID: PMC8409206 DOI: 10.12998/wjcc.v9.i24.7196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lateral facial clefts are atypical with a low incidence in the facial cleft spectrum. With the development of ultrasonography (US) prenatal screening, such facial malformations can be detected and diagnosed prenatally rather than at birth. Although three-dimensional US (3DUS) can render the fetus' face via 3D reconstruction, the 3D images are displayed on two-dimensional screens without field depth, which impedes the understanding of untrained individuals. In contrast, a 3D-printed model of the fetus' face helps both parents and doctors develop a more comprehensive understanding of the facial malformation by creating more interactive aspects. Herein, we present an isolated lateral facial cleft case that was diagnosed via US combined with a 3D-printed model.
CASE SUMMARY A 31-year-old G2P1 patient presented for routine prenatal screening at the 22nd wk of gestation. The coronal nostril-lip section of two-dimensional US (2DUS) demonstrated that the fetus' bilateral oral commissures were asymmetrical, and left oral commissure was abnormally wide. The left oblique-coronal section showed a cleft at the left oral commissure which extended to the left cheek. The results of 3DUS confirmed the cleft. Furthermore, we created a model of the fetal face using 3D printing technology, which clearly presented facial malformations. The fetus was diagnosed with a left lateral facial cleft, which was categorized as a No. 7 facial cleft according to the Tessier facial cleft classification. The parents terminated the pregnancy at the 24th wk of gestation after parental counseling.
CONCLUSION In the diagnostic course of the current case, in addition to the traditional application of 2D and 3DUS, we created a 3D-printed model of the fetus, which enhanced diagnostic evidence, benefited the education of junior doctors, improved parental counseling, and had the potential to guide surgical planning.
Collapse
Affiliation(s)
- Wen-Ling Song
- Department of Obstetrics, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Hai-Ou Ma
- Prenatal Diagnosis Center, The Second Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yu Nan
- Prenatal Diagnosis Center, The Second Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yu-Jia Li
- Prenatal Diagnosis Center, The Second Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Na Qi
- Prenatal Diagnosis Center, The Second Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Ying Zhang
- Prenatal Diagnosis Center, The Second Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xin Xu
- Prenatal Diagnosis Center, The Second Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yuan-Yi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Jilin Engineering Research Center for Spine and Spinal Cord, Changchun 130021, Jilin Province, China
| |
Collapse
|