1
|
Therapeutic potential of Curcuma oil and its terpenoids in gynecological cancers. Biomed Pharmacother 2023; 157:114016. [PMID: 36395609 DOI: 10.1016/j.biopha.2022.114016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gynecological cancers encompass all uncontrolled and aberrant cell growth in the female reproductive system, therapeutic interventions are constantly evolving, but there is still a high death rate, significant side effects and medication resistance, making the task of treatment challenging and complex. The essential oil extracted from the rhizome of Curcuma longa is a promising natural drug, which has excellent biological activity on cancer cells and is to be developed as a new type of anti-gynecological tumor therapeutic agent. PURPOSE To systematically summarize the available evidence for the efficacy of Curcuma oil and its terpenoids (β-elemene, curcumol, furanodiene, and germacrone) in gynecological cancers, primarily malignancies of the reproductive system, involving ovarian, cervical, and endometrial cancers, explain the underlying mechanisms of preventing and treating gynecological cancers, and assess the shortcomings of existing work. RESULTS Through several signaling channels, Curcuma oil and its terpenoids can not only stop the growth of ovarian cancer, cervical cancer, and endometrial cancer cells, limit the formation of tumors, but also raise the effectiveness of chemotherapy drugs and improve the quality of life for patients. CONCLUSION It provides a preclinical basis for the efficacy of Curcuma oil as a broad-spectrum anti-tumor agent for the prevention and treatment of gynecological cancers. Even so, further efforts are still needed to improve the bioavailability of Curcuma oil and upgrade related experiments.
Collapse
|
2
|
Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022; 14:2681. [PMID: 36559176 PMCID: PMC9781429 DOI: 10.3390/pharmaceutics14122681] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
3
|
Chen Y, Zhu Z, Chen J, Zheng Y, Limsila B, Lu M, Gao T, Yang Q, Fu C, Liao W. Terpenoids from Curcumae Rhizoma: Their anticancer effects and clinical uses on combination and versus drug therapies. Biomed Pharmacother 2021; 138:111350. [PMID: 33721752 DOI: 10.1016/j.biopha.2021.111350] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is a fatal disease with high mortality and low survival rate worldwide. At present, there is still no known cure for most cancers. Traditional Chinese medicine (TCM) represents a noteworthy reservoir for anticancer agents in drug discovery and development. Curcumae Rhizoma (called Ezhu in Chinese) is widely prescribed in TCM for anticancer therapy owing to its broad-spectrum antineoplastic activities. Especially, the terpenoids isolated from the essential oil of Curcumae Rhizoma form an integral part of cancer research and are well established as a potential anticancer agent. For example, β-elemene has been developed into a new drug for the treatment of solid tumors in China, and is currently undergoing clinical trials in the United States. The review aims to systematically summarize the recent advances on the anticancer effects and related molecular mechanisms of Curcumae Rhizoma, and its terpenoids (β-elemene, Furanodiene, Furanodienone, Germacrone, Curcumol, Curdione). In addition, we evaluated and compared the anticancer efficacy and clinical use of the terpenoids with combination therapies and traditional therapies. Therefore, this review provides sufficient evidence for the anticancer therapeutic potential of Curcumae Rhizoma and its terpenoids, and will contribute to the development of potential anticancer drugs.
Collapse
Affiliation(s)
- Yi Chen
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zongping Zhu
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiao Chen
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yongfeng Zheng
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Boonjai Limsila
- Institute of Thai-Chinese Medicine Department of Thai Traditional and Alternative Medicines, Ministry of Public Health, Bangkok 11000, Thailand
| | - Meigui Lu
- Huachiew TCM Hospital, Bangkok 10100, Thailand
| | - Tianhui Gao
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qingsong Yang
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chaomei Fu
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Wan Liao
- College of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
4
|
Nair A, Amalraj A, Jacob J, Kunnumakkara AB, Gopi S. Non-Curcuminoids from Turmeric and Their Potential in Cancer Therapy and Anticancer Drug Delivery Formulations. Biomolecules 2019; 9:biom9010013. [PMID: 30609771 PMCID: PMC6358877 DOI: 10.3390/biom9010013] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Over the past decades curcuminoids have been extensively studied for their biological activities such as antiulcer, antifibrotic, antiviral, antibacterial, antiprotozoal, antimutagenic, antifertility, antidiabetic, anticoagulant, antivenom, antioxidant, antihypotensive, antihypocholesteremic, and anticancer activities. With the perception of limited toxicity and cost, these compounds forms an integral part of cancer research and is well established as a potential anticancer agent. However, only few studies have focused on the other bioactive molecules of turmeric, known as non-curcuminoids, which are also equally potent as curcuminoids. This review aims to explore the comprehensive potency including the identification, physicochemical properties, and anticancer mechanism inclusive of molecular docking studies of non-curcuminoids such as turmerones, elemene, furanodiene (FN), bisacurone, germacrone, calebin A (CA), curdione, and cyclocurcumin. An insight into the clinical studies of these curcumin-free compounds are also discussed which provides ample evidence that favors the therapeutic potential of these compounds. Like curcuminoids, limited solubility and bioavailability are the most fragile domain, which circumscribe further applications of these compounds. Thus, this review credits the encapsulation of non-curcuminoid components in diverse drug delivery systems such as co-crystals, solid lipid nanoparticles, liposomes, microspheres, polar-non-polar sandwich (PNS) technology, which help abolish their shortcomings and flaunt their ostentatious benefits as anticancer activities.
Collapse
Affiliation(s)
- Akhila Nair
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| | - Augustine Amalraj
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| | - Joby Jacob
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781 039, India.
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd., Kolenchery, Cochin, Kerala 682311, India.
| |
Collapse
|
5
|
Zhang J, He Y, Jiang J, Li M, Jin C, Wang L, Wang D. In vitro and in vivo evaluation of folate-mediated PEGylated nanostructured lipid carriers for the efficient delivery of furanodiene. Drug Dev Ind Pharm 2017; 43:1610-1618. [DOI: 10.1080/03639045.2017.1328429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jianmei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunpeng He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianqi Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Meng Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Chenhao Jin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
Giordano G, Carbone M, Ciavatta ML, Silvano E, Gavagnin M, Garson MJ, Cheney KL, Mudianta IW, Russo GF, Villani G, Magliozzi L, Polese G, Zidorn C, Cutignano A, Fontana A, Ghiselin MT, Mollo E. Volatile secondary metabolites as aposematic olfactory signals and defensive weapons in aquatic environments. Proc Natl Acad Sci U S A 2017; 114:3451-3456. [PMID: 28289233 PMCID: PMC5380024 DOI: 10.1073/pnas.1614655114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfaction is considered a distance sense; hence, aquatic olfaction is thought to be mediated only by molecules dissolved in water. Here, we challenge this view by showing that shrimp and fish can recognize the presence of hydrophobic olfactory cues by a "tactile" form of chemoreception. We found that odiferous furanosesquiterpenes protect both the Mediterranean octocoral Maasella edwardsi and its specialist predator, the nudibranch gastropod Tritonia striata, from potential predators. Food treated with the terpenes elicited avoidance responses in the cooccurring shrimp Palaemon elegans Rejection was also induced in the shrimp by the memory recall of postingestive aversive effects (vomiting), evoked by repeatedly touching the food with chemosensory mouthparts. Consistent with their emetic properties once ingested, the compounds were highly toxic to brine shrimp. Further experiments on the zebrafish showed that this vertebrate aquatic model also avoids food treated with one of the terpenes, after having experienced gastrointestinal malaise. The fish refused the food after repeatedly touching it with their mouths. The compounds studied thus act simultaneously as (i) toxins, (ii) avoidance-learning inducers, and (iii) aposematic odorant cues. Although they produce a characteristic smell when exposed to air, the compounds are detected by direct contact with the emitter in aquatic environments and are perceived at high doses that are not compatible with their transport in water. The mouthparts of both the shrimp and the fish have thus been shown to act as "aquatic noses," supporting a substantial revision of the current definition of the chemical senses based upon spatial criteria.
Collapse
Affiliation(s)
- Giuseppe Giordano
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
- Department of Science and Technology, Parthenope University of Naples, Naples 80143, Italy
| | - Marianna Carbone
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Maria Letizia Ciavatta
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Eleonora Silvano
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
- Department of Biology, Federico II University of Naples, Naples 80126, Italy
| | - Margherita Gavagnin
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Mary J Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - I Wayan Mudianta
- Department of Analytical Chemistry, Universitas Pendidikan Ganesha, 81116 Bali, Indonesia
| | - Giovanni Fulvio Russo
- Department of Science and Technology, Parthenope University of Naples, Naples 80143, Italy
| | - Guido Villani
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Laura Magliozzi
- Department of Biology, Federico II University of Naples, Naples 80126, Italy
| | - Gianluca Polese
- Department of Biology, Federico II University of Naples, Naples 80126, Italy
| | - Christian Zidorn
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
- Pharmazeutisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany
| | - Adele Cutignano
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Michael T Ghiselin
- Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, CA 94118
| | - Ernesto Mollo
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy;
| |
Collapse
|
7
|
Sun W, Wang S, Zhao W, Wu C, Guo S, Gao H, Tao H, Lu J, Wang Y, Chen X. Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr 2017; 57:1451-1523. [PMID: 27229295 DOI: 10.1080/10408398.2016.1176554] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcuma, a valuable genus in the family Zingiberaceae, includes approximately 110 species. These plants are native to Southeast Asia and are extensively cultivated in India, China, Sri Lanka, Indonesia, Peru, Australia, and the West Indies. The plants have long been used in folk medicine to treat stomach ailments, stimulate digestion, and protect the digestive organs, including the intestines, stomach, and liver. In recent years, substantial progress has been achieved in investigations regarding the chemical and pharmacological properties, as well as in clinical trials of certain Curcuma species. This review comprehensively summarizes the current knowledge on the chemistry and briefly discusses the biological activities of Curcuma species. A total of 720 compounds, including 102 diphenylalkanoids, 19 phenylpropene derivatives, 529 terpenoids, 15 flavonoids, 7 steroids, 3 alkaloids, and 44 compounds of other types isolated or identified from 32 species, have been phytochemically investigated. The biological activities of plant extracts and pure compounds are classified into 15 groups in detail, with emphasis on anti-inflammatory and antitumor activities.
Collapse
Affiliation(s)
- Wen Sun
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Sheng Wang
- b State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Wenwen Zhao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Chuanhong Wu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Shuhui Guo
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongwei Gao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongxun Tao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Jinjian Lu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Xiuping Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
8
|
Maggi F, Papa F, Pucciarelli S, Bramucci M, Quassinti L, Barboni L, Ben DD, Ramadori AT, Graiff C, Galassi R. Stabilization of the cyclodecadiene derivative isofuranodiene by silver (I) coordination. Mechanistic and biological aspects. Fitoterapia 2017; 117:52-60. [PMID: 28069487 DOI: 10.1016/j.fitote.2016.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/11/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
Abstract
The industrial extraction and further applications of isofuranodiene are limited because at room temperature it spontaneously converts to curzerene, a structurally less active isomer. This work definitively identified the structure of isofuranodiene in the solid state, showing the two methyl groups in syn position. In addition, two bioactive metal cations, namely, silver(I) and copper(II) ions, were used in the attempt to obtain the chemical stability of isofuranodiene: in the case of silver(I), a labile adduct was formed, while in the case of copper(II), a more stable 1:1 adduct was achieved. In the former, the presence of silver did not significantly affect the biological activities of isofuranodiene, while in the latter, the copper(II) coordination suppressed them. The biological activities of the isofuranodiene adducts were then evaluated as antiproliferative agents against human tumor cell lines (HCT116, MDA-MB 231, and T98G). In addition, for the first time, isofuranodiene was tested as an inhibitor of DHFR (DiHydroFolateReductase) from Escherichia coli. Anticancer activity was observed in the isofuranodiene with the AgCF3SO3 adduct, in the tested cell lines, with IC50 values ranging from 4.89μM to 13.06μM, while inhibition assays highlighted a Ki of 6.22μM for isofuranodiene and of 0.17μM for the related silver adduct. Docking studies indicated a binding mode score of -6.83Kcal/mol for isofuranodiene, and an energy value of -11.82Kcal/mol for methotrexate (a classic DHFR inhibitor).
Collapse
Affiliation(s)
- Filippo Maggi
- School of Pharmacy, University of Camerino, Via S. Agostino, 1, I-62032 Camerino, Italy
| | - Fabrizio Papa
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino, 1, I-62032 Camerino, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, I-62032 Camerino, Italy
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, Via S. Agostino, 1, I-62032 Camerino, Italy
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, Via S. Agostino, 1, I-62032 Camerino, Italy
| | - Luciano Barboni
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino, 1, I-62032 Camerino, Italy
| | - Diego Dal Ben
- School of Pharmacy, University of Camerino, Via S. Agostino, 1, I-62032 Camerino, Italy
| | - Anna Teresa Ramadori
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino, 1, I-62032 Camerino, Italy
| | - Claudia Graiff
- Dipartimento di Chimica, Università di Parma, Viale delle Scienze 17/A, 43100 Parma, Italy
| | - Rossana Galassi
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino, 1, I-62032 Camerino, Italy.
| |
Collapse
|
9
|
Santos DNE, Souza LLD, Ferreira NJ, Oliveira ALD. Study of supercritical extraction from Brazilian cherry seeds (Eugenia uniflora L.) with bioactive compounds. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2014.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Mollo E, Fontana A, Roussis V, Polese G, Amodeo P, Ghiselin MT. Sensing marine biomolecules: smell, taste, and the evolutionary transition from aquatic to terrestrial life. Front Chem 2014; 2:92. [PMID: 25360437 PMCID: PMC4199317 DOI: 10.3389/fchem.2014.00092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/29/2014] [Indexed: 01/03/2023] Open
Abstract
The usual definition of smell and taste as distance and contact forms of chemoreception, respectively, has resulted in the belief that, during the shift from aquatic to terrestrial life, odorant receptors (ORs) were selected mainly to recognize airborne hydrophobic ligands, instead of the hydrophilic molecules involved in marine remote-sensing. This post-adaptive evolutionary scenario, however, neglects the fact that marine organisms 1) produce and detect a wide range of small hydrophobic and volatile molecules, especially terpenoids, and 2) contain genes coding for ORs that are able to bind those compounds. These apparent anomalies can be resolved by adopting an alternative, pre-adaptive scenario. Before becoming airborne on land, small molecules, almost insoluble in water, already played a key role in aquatic communication, but acting in "contact" forms of olfaction that did not require major molecular innovations to become effective at a distance in air. Rather, when air was "invaded" by volatile marine terpenoids, an expansion of the spatial range of olfaction was an incidental consequence rather than an adaptation.
Collapse
Affiliation(s)
- Ernesto Mollo
- Institute of Biomolecular Chemistry, National Research Council of Italy Pozzuoli, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, National Research Council of Italy Pozzuoli, Italy
| | | | - Gianluca Polese
- Department of Biology, University of Naples "Federico II," Naples, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council of Italy Pozzuoli, Italy
| | - Michael T Ghiselin
- Department of Invertebrate Zoology and Geology, California Academy of Sciences San Francisco, CA, USA
| |
Collapse
|
11
|
Maggi F, Barboni L, Papa F, Caprioli G, Ricciutelli M, Sagratini G, Vittori S. A forgotten vegetable (Smyrnium olusatrum L., Apiaceae) as a rich source of isofuranodiene. Food Chem 2012; 135:2852-62. [DOI: 10.1016/j.foodchem.2012.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/16/2012] [Accepted: 07/04/2012] [Indexed: 11/28/2022]
|
12
|
Antitumour Effects of Isocurcumenol Isolated from Curcuma zedoaria Rhizomes on Human and Murine Cancer Cells. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2011; 2011:253962. [PMID: 27429805 PMCID: PMC4939266 DOI: 10.1155/2011/253962] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/05/2011] [Indexed: 11/17/2022]
Abstract
Curcuma zedoaria belonging to the family Zingiberaceae has been used in the traditional system of medicine in India and Southwest Asia in treating many human ailments and is found to possess many biological activities. The rationale of the present study was to isolate, identify, and characterize antitumour principles from the rhizomes of Curcuma zedoaria, to assess its cytotoxic effects on human and murine cancer cells, to determine its apoptosis inducing capacity in cancer cells, and to evaluate its tumour reducing properties in in vivo mice models. Isocurcumenol was characterized as the active compound by spectroscopy and was found to inhibit the proliferation of cancer cells without inducing significant toxicity to the normal cells. Fluorescent staining exhibited the morphological features of apoptosis in the compound-treated cancer cells. In vivo tumour reduction studies revealed that a dose of 35.7 mg/kg body weight significantly reduced the ascitic tumour in DLA-challenged mice and increased the lifespan with respect to untreated control mice.
Collapse
|