1
|
Wu J, Zhang G, Zhang L, Ye S, Huang T, Fan D. The integrity of the corticospinal tract and corpus callosum, and the risk of ALS: univariable and multivariable Mendelian randomization. Sci Rep 2024; 14:17216. [PMID: 39060317 PMCID: PMC11282093 DOI: 10.1038/s41598-024-68374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Studies suggest that amyotrophic lateral sclerosis (ALS) compromises the integrity of white matter fiber tracts, primarily affecting motor fibers. However, it remains uncertain whether the integrity of these fibers influences the risk of ALS. We performed bidirectional two-sample Mendelian randomization (MR) and multivariable MR analyses to evaluate the associative relationships between the integrity of fiber tracts [including the corticospinal tract (CST) and corpus callosum (CC)] and the risk of ALS. Genetic instrumental variables for specific fiber tracts were obtained from published genome-wide association studies (GWASs), including 33,292 European individuals from five diffusion magnetic resonance imaging (dMRI) datasets. Summary-level GWAS data for ALS were derived from 27,205 ALS patients and 110,881 controls. The MR results suggested that an increase in the first principal component (PC1) of fractional anisotropy (FA) in the genu of the CC (GCC) was correlated with an increased risk of ALS (PFDR = 0.001, odds ratio = 1.363, 95% confidence interval 1.178-1.577). Although other neuroimaging phenotypes [mean diffusivity in the CST, radial diffusivity (RD) in the CST, FA in the GCC, PC1 in the body of the CC (BCC), PC1 in the CST, and RD in the GCC] did not pass correction, they were also considered to have suggestive associations with the risk of ALS. No evidence revealed that ALS caused changes in the integrity of fiber tracts. In summary, the results of this study provide genetic support for the potential association between the integrity of specific fiber tracts and the risk of ALS. Greater fiber integrity in the GCC and BCC may be a risk factor for ALS, while greater fiber integrity in the CST may have a protective effect on ALS. This study provides insights into ALS development.
Collapse
Affiliation(s)
- Jieying Wu
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, 100191, China
| | - Gan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, 100191, China
| | - Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, 100191, China
| | - Shan Ye
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, 100191, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Sciences, Peking University, Ministry of Education, Beijing, 100191, China.
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, 100191, China.
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, 100191, China.
| |
Collapse
|
2
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
3
|
Cao Y, Wu Y, Dong Q, Huang N, Zou Z, Chen H. Neurite orientation dispersion and density imaging quantifies microstructural impairment in the thalamus and its connectivity in amyotrophic lateral sclerosis. CNS Neurosci Ther 2024; 30:e14616. [PMID: 38334027 PMCID: PMC10853891 DOI: 10.1111/cns.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
AIMS To evaluate microstructural impairment in the thalamus and thalamocortical connectivity using neurite orientation dispersion and density imaging (NODDI) in amyotrophic lateral sclerosis (ALS). METHODS This study included 47 healthy controls and 43 ALS patients, whose structural and diffusion-weighted data were collected. We used state-of-the-art parallel transport tractography to identify thalamocortical pathways in individual spaces. Thalamus was then parcellated into six subregions based on its connectivity pattern with the priori defined cortical (i.e., prefrontal/motor/somatosensory/temporal/posterior-parietal/occipital) regions. For each of the thalamic and cortical subregions and thalamo-cortical tracts, we compared the following NODDI metrics between groups: orientation dispersion index (ODI), neurite density index (NDI), and isotropic volume fraction (ISO). We also used these metrics to conduct receiver operating characteristic curve (ROC) analyses and Spearman correlation. RESULTS In ALS patients, we found decreased ODI and increased ISO in the thalamic subregion connecting the left motor cortex and other extramotor (e.g., somatosensory and occipital) cortex (Bonferroni-corrected p < 0.05). NDI decreased in the bilateral thalamo-motor and thalamo-somatosensory tracts and in the right thalamo-posterior-parietal and thalamo-occipital tracts (Bonferroni-corrected p < 0.05). NDI reduction in the bilateral thalamo-motor tract (p = 0.017 and 0.009) and left thalamo-somatosensory tract (p = 0.029) was correlated with disease severity. In thalamo-cortical tracts, NDI yielded a higher effect size during between-group comparisons and a greater area under ROC (p < 0.05) compared with conventional diffusion tensor imaging metrics. CONCLUSIONS Microstructural impairment in the thalamus and thalamocortical connectivity is the hallmark of ALS. NODDI improved the detection of disrupted thalamo-cortical connectivity in ALS.
Collapse
Affiliation(s)
- Yun‐Bin Cao
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Ye Wu
- School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Qiu‐Yi Dong
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Nao‐Xin Huang
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Zhang‐Yu Zou
- Department of NeurologyFujian Medical University Union HospitalFuzhouChina
| | - Hua‐Jun Chen
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
4
|
Hippocampal Metabolic Alterations in Amyotrophic Lateral Sclerosis: A Magnetic Resonance Spectroscopy Study. Life (Basel) 2023; 13:life13020571. [PMID: 36836928 PMCID: PMC9965919 DOI: 10.3390/life13020571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) in amyotrophic lateral sclerosis (ALS) has been overwhelmingly applied to motor regions to date and our understanding of frontotemporal metabolic signatures is relatively limited. The association between metabolic alterations and cognitive performance in also poorly characterised. MATERIAL AND METHODS In a multimodal, prospective pilot study, the structural, metabolic, and diffusivity profile of the hippocampus was systematically evaluated in patients with ALS. Patients underwent careful clinical and neurocognitive assessments. All patients were non-demented and exhibited normal memory performance. 1H-MRS spectra of the right and left hippocampi were acquired at 3.0T to determine the concentration of a panel of metabolites. The imaging protocol also included high-resolution T1-weighted structural imaging for subsequent hippocampal grey matter (GM) analyses and diffusion tensor imaging (DTI) for the tractographic evaluation of the integrity of the hippocampal perforant pathway zone (PPZ). RESULTS ALS patients exhibited higher hippocampal tNAA, tNAA/tCr and tCho bilaterally, despite the absence of volumetric and PPZ diffusivity differences between the two groups. Furthermore, superior memory performance was associated with higher hippocampal tNAA/tCr bilaterally. Both longer symptom duration and greater functional disability correlated with higher tCho levels. CONCLUSION Hippocampal 1H-MRS may not only contribute to a better academic understanding of extra-motor disease burden in ALS, but given its sensitive correlations with validated clinical metrics, it may serve as practical biomarker for future clinical and clinical trial applications. Neuroimaging protocols in ALS should incorporate MRS in addition to standard structural, functional, and diffusion sequences.
Collapse
|
5
|
Sensory Involvement in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms232415521. [PMID: 36555161 PMCID: PMC9779879 DOI: 10.3390/ijms232415521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) is pre-eminently a motor disease, the existence of non-motor manifestations, including sensory involvement, has been described in the last few years. Although from a clinical perspective, sensory symptoms are overshadowed by their motor manifestations, this does not mean that their pathological significance is not relevant. In this review, we have made an extensive description of the involvement of sensory and autonomic systems described to date in ALS, from clinical, neurophysiological, neuroimaging, neuropathological, functional, and molecular perspectives.
Collapse
|
6
|
Chipika RH, Mulkerrin G, Pradat PF, Murad A, Ango F, Raoul C, Bede P. Cerebellar pathology in motor neuron disease: neuroplasticity and neurodegeneration. Neural Regen Res 2022; 17:2335-2341. [PMID: 35535867 PMCID: PMC9120698 DOI: 10.4103/1673-5374.336139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis is a relentlessly progressive multi-system condition. The clinical picture is dominated by upper and lower motor neuron degeneration, but extra-motor pathology is increasingly recognized, including cerebellar pathology. Post-mortem and neuroimaging studies primarily focus on the characterization of supratentorial disease, despite emerging evidence of cerebellar degeneration in amyotrophic lateral sclerosis. Cardinal clinical features of amyotrophic lateral sclerosis, such as dysarthria, dysphagia, cognitive and behavioral deficits, saccade abnormalities, gait impairment, respiratory weakness and pseudobulbar affect are likely to be exacerbated by co-existing cerebellar pathology. This review summarizes in vivo and post mortem evidence for cerebellar degeneration in amyotrophic lateral sclerosis. Structural imaging studies consistently capture cerebellar grey matter volume reductions, diffusivity studies readily detect both intra-cerebellar and cerebellar peduncle white matter alterations and functional imaging studies commonly report increased functional connectivity with supratentorial regions. Increased functional connectivity is commonly interpreted as evidence of neuroplasticity representing compensatory processes despite the lack of post-mortem validation. There is a scarcity of post-mortem studies focusing on cerebellar alterations, but these detect pTDP-43 in cerebellar nuclei. Cerebellar pathology is an overlooked facet of neurodegeneration in amyotrophic lateral sclerosis despite its contribution to a multitude of clinical symptoms, widespread connectivity to spinal and supratentorial regions and putative role in compensating for the degeneration of primary motor regions.
Collapse
Affiliation(s)
- Rangariroyashe H Chipika
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Grainne Mulkerrin
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Aizuri Murad
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabrice Ango
- The Neuroscience Institute of Montpellier (INM), INSERM, CNRS, Montpellier, France
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier (INM), INSERM, CNRS, Montpellier, France
| | - Peter Bede
- Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France
| |
Collapse
|
7
|
Bao SS, Zhao C, Chen HW, Feng T, Guo XJ, Xu M, Rao JS. NT3 treatment alters spinal cord injury-induced changes in the gray matter volume of rhesus monkey cortex. Sci Rep 2022; 12:5919. [PMID: 35396344 PMCID: PMC8993853 DOI: 10.1038/s41598-022-09981-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) may cause structural alterations in brain due to pathophysiological processes, but the effects of SCI treatment on brain have rarely been reported. Here, voxel-based morphometry is employed to investigate the effects of SCI and neurotrophin-3 (NT3) coupled chitosan-induced regeneration on brain and spinal cord structures in rhesus monkeys. Possible association between brain and spinal cord structural alterations is explored. The pain sensitivity and stepping ability of animals are collected to evaluate sensorimotor functional alterations. Compared with SCI, the unique effects of NT3 treatment on brain structure appear in extensive regions which involved in motor control and neuropathic pain, such as right visual cortex, superior parietal lobule, left superior frontal gyrus (SFG), middle frontal gyrus, inferior frontal gyrus, insula, secondary somatosensory cortex, anterior cingulate cortex, and bilateral caudate nucleus. Particularly, the structure of insula is significantly correlated with the pain sensitivity. Regenerative treatment also shows a protective effect on spinal cord structure. The associations between brain and spinal cord structural alterations are observed in right primary somatosensory cortex, SFG, and other regions. These results help further elucidate secondary effects on brain of SCI and provide a basis for evaluating the effects of NT3 treatment on brain structure.
Collapse
Affiliation(s)
- Shu-Sheng Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, 100068, China. .,School of Rehabilitation, Capital Medical University, Beijing, 100068, China.
| | - Hao-Wei Chen
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ting Feng
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiao-Jun Guo
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
8
|
Brain volumes and dual-task performance correlates among individuals with cognitive impairment: a retrospective analysis. J Neural Transm (Vienna) 2020; 127:1057-1071. [PMID: 32350624 PMCID: PMC7293667 DOI: 10.1007/s00702-020-02199-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/21/2020] [Indexed: 10/26/2022]
Abstract
Cognitive impairment (CI) is a prevalent condition characterized by loss of brain volume and changes in cognition, motor function, and dual-tasking ability. To examine associations between brain volumes, dual-task performance, and gait and balance in those with CI to elucidate the mechanisms underlying loss of function. We performed a retrospective analysis of medical records of patients with CI and compared brain volumes, dual-task performance, and measures of gait and balance. Greater cognitive and combined dual-task effects (DTE) are associated with smaller brain volumes. In contrast, motor DTE is not associated with distinct pattern of brain volumes. As brain volumes decrease, dual-task performance becomes more motor prioritized. Cognitive DTE is more strongly associated with decreased performance on measures of gait and balance than motor DTE. Decreased gait and balance performance are also associated with increased motor task prioritization. Cognitive DTE appears to be more strongly associated with decreased automaticity and gait and balance ability than motor DTE and should be utilized as a clinical and research outcome measure in this population. The increased motor task prioritization associated with decreased brain volume and function indicates a potential for accommodative strategies to maximize function in those with CI. Counterintuitive correlations between motor brain volumes and motor DTE in our study suggest a complicated interaction between brain pathology and function.
Collapse
|
9
|
Luo C, Hu N, Xiao Y, Zhang W, Gong Q, Lui S. Comparison of Gray Matter Atrophy in Behavioral Variant Frontal Temporal Dementia and Amyotrophic Lateral Sclerosis: A Coordinate-Based Meta-Analysis. Front Aging Neurosci 2020; 12:14. [PMID: 32116647 PMCID: PMC7026505 DOI: 10.3389/fnagi.2020.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/16/2020] [Indexed: 02/05/2023] Open
Abstract
Background: There is growing evidence supporting behavioral variant frontotemporal dementia (bvFTD) and amyotrophic lateral sclerosis (ALS) as extreme points of a disease spectrum. The aim of this study was to delineate the common and different patterns of gray matter atrophy associated with bvFTD and with ALS by pooling together the results of previous voxel-based morphometry (VBM) studies. Methods: We retrieved VBM studies that investigated gray matter atrophy in bvFTD patients vs. controls and in ALS patients vs. controls. Stereotactic data were extracted from those studies and subsequently tested for convergence and differences using activation likelihood estimation (ALE). A behavioral analysis using the BrainMap database was performed to assess the functional roles of the regions affected by bvFTD and/or ALS. Results: Our study demonstrated a convergence of gray matter atrophy in the frontolimbic structures that involve the bilateral anterior insula and anterior cingulate cortex. Comparing the pattern of GM atrophy in bvFTD and ALS patients revealed greater atrophy in the frontomedial cortex, bilateral caudate, left anterior insula, and right thalamus in those with bvFTD and a higher degree of atrophy in the right motor cortex of those with ALS. Behavioral analysis revealed that the pattern of the affected regions contributed to the dysfunction of emotional and cognitive processing in bvFTD patients and the dysfunction of motor execution in ALS patients. Conclusion: Our results revealed a shared neural basis between bvFTD and ALS subjects, as well as a specific and distinct neural signature that underpinned the clinical manifestations of those two diseases. Those findings outlined the role of the frontomedial-caudate circuit in the development of bvFTD-like deficits in ALS patients.
Collapse
Affiliation(s)
- Chunyan Luo
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Bede P, Pradat PF. Editorial: Biomarkers and Clinical Indicators in Motor Neuron Disease. Front Neurol 2020; 10:1318. [PMID: 31920939 PMCID: PMC6920250 DOI: 10.3389/fneur.2019.01318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne University, CNRS, INSERM, Biomedical Imaging Laboratory, Paris, France
| | - Pierre-Francois Pradat
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France.,Sorbonne University, CNRS, INSERM, Biomedical Imaging Laboratory, Paris, France
| |
Collapse
|
11
|
Steinbach R, Batyrbekova M, Gaur N, Voss A, Stubendorff B, Mayer TE, Gaser C, Witte OW, Prell T, Grosskreutz J. Applying the D50 disease progression model to gray and white matter pathology in amyotrophic lateral sclerosis. NEUROIMAGE-CLINICAL 2019; 25:102094. [PMID: 31896467 PMCID: PMC6940701 DOI: 10.1016/j.nicl.2019.102094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
The D50 disease progression model well characterized a cross-sectional ALS cohort. VBM reveled ALS-related widespread gray and white matter density decreases. A spread of structural alterations occurs along with D50 model derived disease phases. White-matter alterations were associated with higher disease aggressiveness.
Therapeutic management and research in Amyotrophic Laterals Sclerosis (ALS) have been limited by the substantial heterogeneity in progression and anatomical spread that are endemic of the disease. Neuroimaging biomarkers represent powerful additions to the current monitoring repertoire but have yielded inconsistent associations with clinical scores like the ALS functional rating scale. The D50 disease progression model was developed to address limitations with clinical indices and the difficulty obtaining longitudinal data in ALS. It yields overall disease aggressiveness as time taken to reach halved functionality (D50); individual disease covered in distinct phases; and calculated functional state and calculated functional loss as acute descriptors of local disease activity. It greatly reduces the noise of the ALS functional rating scale and allows the comparison of highly heterogeneous disease and progression subtypes. In this study, we performed Voxel-Based Morphometry for 85 patients with ALS (60.1 ± 11.5 years, 36 female) and 62 healthy controls. Group-wise comparisons were performed separately for gray matter and white matter using ANCOVA testing with threshold-free cluster enhancement. ALS-related widespread gray and white matter density decreases were observed in the bilateral frontal and temporal lobes (p < 0.001, family-wise error corrected). We observed a progressive spread of structural alterations along the D50-derived phases, that were primarily located in frontal, temporal and occipital gray matter areas, as well as in supratentorial neuronal projections (p < 0.001 family-wise error corrected). ALS patients with higher overall disease aggressiveness (D50 < 30 months) showed a distinct pattern of supratentorial white matter density decreases relative to patients with lower aggressiveness; no significant differences were observed for gray matter density (p < 0.001 family-wise error corrected). The application of the D50 disease progression model separates measures of disease aggressiveness from disease accumulation. It revealed a strong correlation between disease phases and in-vivo measures of cerebral structural integrity. This study underscores the proposed corticofugal spread of cerebral pathology in ALS. We recommend application of the D50 model in studies linking clinical data with neuroimaging correlates.
Collapse
Affiliation(s)
- Robert Steinbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Meerim Batyrbekova
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Nayana Gaur
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Annika Voss
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Thomas E Mayer
- Department of Neuroradiology, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Tino Prell
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany; Center for Healthy Ageing, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Consonni M, Dalla Bella E, Nigri A, Pinardi C, Demichelis G, Porcu L, Gellera C, Pensato V, Cappa SF, Bruzzone MG, Lauria G, Ferraro S. Cognitive Syndromes and C9orf72 Mutation Are Not Related to Cerebellar Degeneration in Amyotrophic Lateral Sclerosis. Front Neurosci 2019; 13:440. [PMID: 31133784 PMCID: PMC6524613 DOI: 10.3389/fnins.2019.00440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/17/2019] [Indexed: 01/30/2023] Open
Abstract
Objective The notion that cerebellar pathology may contribute to cognitive impairment in ALS, especially in patients with C9orf72 repeated expansion, has been inconsistently reported. This study aimed exploring the relationship between cerebellar involvement, cognitive impairment and C9orf72 repeated expansion of patients with ALS. Methods Quantitative in vivo assessment of cerebellar lobules has been investigated in 66 non-demented patients with ALS and 28 healthy controls (HCs). Pathologic C9orf72 repeated expansion was found in 13 patients. Mild cognitive and/or behavioral impairment was diagnosed in 22 C9orf72 negative ALS patients. Measures of cortical volume (CV) and cortical thickness (CT) of cerebellar lobules of all participants were used for Principal Component Analysis (PCA) to identify clusters of lobular measures highly correlated with each other. PCA outcomes were used for between group comparisons and correlation analyses with neuropsychological and clinical features. Results Disease severity measured with ALS functional rating scale and index of disease progression rate significantly correlated with CV reduction of the second PCA cluster loading CV measures of anterior lobules. In all patients, cognitive impairment, measured with verbal fluency, was related to CV reduction of the third cluster comprising posterior lobules. No specific cortical thinning or volume reduction of cerebellar clustering patterns could be detected in ALS subgroups. Conclusion Our data show that specific patterns of subregional cerebellar involvement are associated with physical disability or cognitive impairment in ALS, in line with the topographic organization of the cerebellum. However, there was no specific correlation between cerebellar degeneration and cognitive syndromes or C9orf72 mutations.
Collapse
Affiliation(s)
- Monica Consonni
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Nigri
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Chiara Pinardi
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Greta Demichelis
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Luca Porcu
- Laboratory of Methodology for Clinical Research, Oncology Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Viviana Pensato
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano F Cappa
- Institute for Advanced Study-IUSS Pavia, Pavia, Italy.,IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and Motor Neuron Diseases Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - Stefania Ferraro
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| |
Collapse
|