1
|
Zhao X, Xiao P, Gui H, Xu B, Wang H, Tao L, Chen H, Wang H, Lv F, Luo T, Cheng O, Luo J, Man Y, Xiao Z, Fang W. Combined graph convolutional networks with a multi-connection pattern to identify tremor-dominant Parkinson's disease and Essential tremor with resting tremor. Neuroscience 2024; 563:239-251. [PMID: 39550063 DOI: 10.1016/j.neuroscience.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Essential tremor with resting tremor (rET) and tremor-dominant Parkinson's disease (tPD) share many similar clinical symptoms, leading to frequent misdiagnoses. Functional connectivity (FC) matrix analysis derived from resting-state functional MRI (Rs-fMRI) offers a promising approach for early diagnosis and for exploring FC network pathogenesis in rET and tPD. However, methods relying solely on a single connection pattern may overlook the complementary roles of different connectivity patterns, resulting in reduced diagnostic differentiation. Therefore, we propose a multi-pattern connection Graph Convolutional Network (MCGCN) method to integrate information from various connection modes, distinguishing between rET and healthy controls (HC), tPD and HC, and rET and tPD. We constructed FC matrices using three different connectivity modes for each subject and used these as inputs to the MCGCN model for disease classification. The classification performance of the model was evaluated for each connectivity mode. Subsequently, gradient-weighted class activation mapping (Grad-CAM) was used to identify the most discriminative brain regions. The important brain regions identified were primarily distributed within cerebellar-motor and non-motor cortical networks. Compared with single-pattern GCN, our proposed MCGCN model demonstrated superior classification accuracy, underscoring the advantages of integrating multiple connectivity modes. Specifically, the model achieved an average accuracy of 88.0% for distinguishing rET from HC, 88.8% for rET from tPD, and 89.6% for tPD from HC. Our findings indicate that combining graph convolutional networks with multi-connection patterns can not only effectively discriminate between tPD, rET, and HC but also enhance our understanding of the functional network mechanisms underlying rET and tPD.
Collapse
Affiliation(s)
- Xiaole Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Xiao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Honge Gui
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bintao Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyu Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiyue Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hansheng Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Man
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Prasad S, Saini J, Bharath RD, Pal PK. Differential patterns of functional connectivity in tremor dominant Parkinson's disease and essential tremor plus. J Neural Transm (Vienna) 2024; 131:781-789. [PMID: 38430265 DOI: 10.1007/s00702-024-02761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Tremor dominant Parkinson's disease (TDPD) and essential tremor plus (ETP) syndrome are commonly encountered tremor dominant neurological disorders. Although the basal ganglia thalamocortical (BGTC) and cerebello thalamocortical (CTC) networks are implicated in tremorogenesis, the extent of functional connectivity alterations across disorders is uncertain. This study aims to evaluate functional connectivity of the BGTC and CTC in TDPD and ETP. Resting state functional MRI was acquired for 25 patients with TDPD, ETP and 22 healthy controls (HC). Following pre-processing and denoising, seed-to-voxel based connectivity was carried out at FDR < 0.05 using ROIs belonging to the BGTC and CTC. Fahn-Tolosa-Marin tremor rating scale (FTMRS) was correlated with the average connectivity values at FDR < 0.05. Compared to HC, TDPD showed decreased connectivity between cerebellum and pre, post central gyrus. While, ETP showed decreased connectivity between pallidum and occipital cortex, precuneus, cuneus compared to HC. In comparison to ETP, TDPD showed increased connectivity between precentral gyrus, pallidum, SNc with the default mode network (DMN), and decreased connectivity between cerebellum with superior, middle frontal gyrus was observed. Tremor severity positively correlated with connectivity between SNc and DMN in TDPD, and negatively correlated with pallidal connectivity in ETP. Pattern of BGTC, CTC involvement is differential i.e., higher connectivity of the BGTC nodes in TDPD, and higher connectivity of cerebellar nodes in ETP. The interesting observation of pallidal involvement in ETP suggests the role of BGTC in the pathogenesis of ETP, and indicated similarities in concepts of tremor genesis in TDPD and ETP.
Collapse
Affiliation(s)
- Shweta Prasad
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Hosur Road, Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
3
|
Aracri F, Quattrone A, Bianco MG, Sarica A, De Maria M, Calomino C, Crasà M, Nisticò R, Buonocore J, Vescio B, Vaccaro MG, Quattrone A. Multimodal imaging and electrophysiological study in the differential diagnosis of rest tremor. Front Neurol 2024; 15:1399124. [PMID: 38854965 PMCID: PMC11160119 DOI: 10.3389/fneur.2024.1399124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Distinguishing tremor-dominant Parkinson's disease (tPD) from essential tremor with rest tremor (rET) can be challenging and often requires dopamine imaging. This study aimed to differentiate between these two diseases through a machine learning (ML) approach based on rest tremor (RT) electrophysiological features and structural MRI data. Methods We enrolled 72 patients including 40 tPD patients and 32 rET patients, and 45 control subjects (HC). RT electrophysiological features (frequency, amplitude, and phase) were calculated using surface electromyography (sEMG). Several MRI morphometric variables (cortical thickness, surface area, cortical/subcortical volumes, roughness, and mean curvature) were extracted using Freesurfer. ML models based on a tree-based classification algorithm termed XGBoost using MRI and/or electrophysiological data were tested in distinguishing tPD from rET patients. Results Both structural MRI and sEMG data showed acceptable performance in distinguishing the two patient groups. Models based on electrophysiological data performed slightly better than those based on MRI data only (mean AUC: 0.92 and 0.87, respectively; p = 0.0071). The top-performing model used a combination of sEMG features (amplitude and phase) and MRI data (cortical volumes, surface area, and mean curvature), reaching AUC: 0.97 ± 0.03 and outperforming models using separately either MRI (p = 0.0001) or EMG data (p = 0.0231). In the best model, the most important feature was the RT phase. Conclusion Machine learning models combining electrophysiological and MRI data showed great potential in distinguishing between tPD and rET patients and may serve as biomarkers to support clinicians in the differential diagnosis of rest tremor syndromes in the absence of expensive and invasive diagnostic procedures such as dopamine imaging.
Collapse
Affiliation(s)
- Federica Aracri
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
- Institute of Neurology, University “Magna Graecia”, Catanzaro, Italy
| | | | - Alessia Sarica
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| | - Marida De Maria
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| | - Camilla Calomino
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| | - Marianna Crasà
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| | - Rita Nisticò
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| | - Jolanda Buonocore
- Institute of Neurology, University “Magna Graecia”, Catanzaro, Italy
| | | | | | - Aldo Quattrone
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
4
|
Bu S, Pang H, Li X, Zhao M, Wang J, Liu Y, Yu H, Fan G. Structural and Functional Alterations of Motor-Thalamus in Different Motor Subtype of Parkinson's Disease: An Individual Study. Acad Radiol 2024; 31:1605-1614. [PMID: 37863779 DOI: 10.1016/j.acra.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
RATIONALE AND OBJECTIVES This study aimed to investigate the structural and functional alterations occurring within bilateral premotor thalamus (mPMtha) in motor subtypes of Parkinson's disease (PD). MATERIALS AND METHODS Sixty-one individuals with instability and gait difficulty (PIGD) subtype, 60 individuals with tremor-dominant (TD) subtype and 66 healthy controls (HCs) participated in the study. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) and 3D T1-weighted (3DT1) scans. Functional connectivity (FC) analysis and Voxel-based morphometry (VBM) analysis were performed to evaluate the function and volume of mPMtha. Additionally, correlations between motor performance and FC values, volumes were examined separately. Support vector machine (SVM) model based on FC values and thalamic volumes was conducted to assist in the clinical diagnosis of PD motor subtype. RESULTS Compared to HCs and PIGD, TD subtype showed increased FC between the bilateral mPMtha and left middle occipital gyrus, left inferior parietal lobule (IPL). While PIGD subtype demonstrated decreased FC between right mPMtha and precentral gyrus (PreCG), supramarginal, IPL and superior parietal lobule. FC of bilateral mPMtha with the identified regions were significantly correlated with motor performance scores in PD patients. The SVM classification based on FC values demonstrated a high level of efficiency (AUC=0.874). The volumes of the bilateral mPMtha were indifferent among three groups. CONCLUSION We noted distinct FC alterations of mPMtha in TD and PIGD subtypes, and these changes were correlated with motor performance. Furthermore, the machine learning based on statistically significant FC might be served as an alternative approach for automatically classifying PD motor subtypes individually.
Collapse
Affiliation(s)
- Shuting Bu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Huize Pang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Xiaolu Li
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Mengwan Zhao
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Juzhou Wang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China (H.Y.)
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.).
| |
Collapse
|
5
|
Sadeghi F, Pötter-Nerger M, Grimm K, Gerloff C, Schulz R, Zittel S. Smaller Cerebellar Lobule VIIb is Associated with Tremor Severity in Parkinson's Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 23:355-362. [PMID: 36802020 PMCID: PMC10950956 DOI: 10.1007/s12311-023-01532-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
Alterations in the cerebellum's morphology in Parkinson's disease (PD) point to its pathophysiological involvement in this movement disorder. Such abnormalities have previously been attributed to different PD motor subtypes. The aim of the study was to relate volumes of specific cerebellar lobules to motor symptom severity, in particular tremor (TR), bradykinesia/rigidity (BR), and postural instability and gait disorders (PIGD) in PD. We performed a volumetric analysis based on T1-weighted MRI images of 55 participants with PD (22 females, median age 65 years, Hoehn and Yahr stage 2). Multiple regression models were fitted to investigate associations between volumes of cerebellar lobules with clinical symptom severity based on MDS-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III score and sub-scores for TR, BR, and PIGD; adjusted for age, sex, disease duration, and intercranial volume as cofactors. Smaller volume of lobule VIIb was associated with higher tremor severity (P = 0.004). No structure-function relationships were detected for other lobules or other motor symptoms. This distinct structural association denotes the involvement of the cerebellum in PD tremor. Characterizing morphological features of the cerebellum leads to a better understanding of its role in the spectrum of motor symptoms in PD and contributes further to identifying potential biological markers.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Monika Pötter-Nerger
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Kai Grimm
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Christian Gerloff
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Robert Schulz
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Simone Zittel
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
6
|
Sharifi S, Buijink AWG, Luft F, Scheijbeler EP, Potters WV, van Wingen G, Heida T, Bour LJ, van Rootselaar AF. Differences in Olivo-Cerebellar Circuit and Cerebellar Network Connectivity in Essential Tremor: a Resting State fMRI Study. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1123-1136. [PMID: 36214998 PMCID: PMC10657290 DOI: 10.1007/s12311-022-01486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
The olivo-cerebellar circuit is thought to play a crucial role in the pathophysiology of essential tremor (ET). Whether olivo-cerebellar circuit dysfunction is also present at rest, in the absence of clinical tremor and linked voluntary movement, remains unclear. Assessing this network in detail with fMRI is challenging, considering the brainstem is close to major arteries and pulsatile cerebrospinal fluid-filled spaces obscuring signals of interest. Here, we used methods tailored to the analysis of infratentorial structures. We hypothesize that the olivo-cerebellar circuit shows altered intra-network connectivity at rest and decreased functional coupling with other parts of the motor network in ET. In 17 ET patients and 19 healthy controls, we investigated using resting state fMRI intracerebellar functional and effective connectivity on a dedicated cerebellar atlas. With independent component analysis, we investigated data-driven cerebellar motor network activations during rest. Finally, whole-brain connectivity of cerebellar motor structures was investigated using identified components. In ET, olivo-cerebellar pathways show decreased functional connectivity compared with healthy controls. Effective connectivity analysis showed an increased inhibitory influence of the dentate nucleus towards the inferior olive. Cerebellar independent component analyses showed motor resting state networks are less strongly connected to the cerebral cortex compared to controls. Our results indicate the olivo-cerebellar circuit to be affected at rest. Also, the cerebellum is "disconnected" from the rest of the motor network. Aberrant activity, generated within the olivo-cerebellar circuit could, during action, spread towards other parts of the motor circuit and potentially underlie the characteristic tremor of this patient group.
Collapse
Affiliation(s)
- Sarvi Sharifi
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands.
| | - Arthur W G Buijink
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Frauke Luft
- Department of Biomedical Signals and Systems, University of Twente, TechMed Centre, Enschede, The Netherlands
| | - Elliz P Scheijbeler
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
| | - Wouter V Potters
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tjitske Heida
- Department of Biomedical Signals and Systems, University of Twente, TechMed Centre, Enschede, The Netherlands
| | - Lo J Bour
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Anne-Fleur van Rootselaar
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Purrer V, Pohl E, Lueckel JM, Borger V, Sauer M, Radbruch A, Wüllner U, Schmeel FC. Artificial-intelligence-based MRI brain volumetry in patients with essential tremor and tremor-dominant Parkinson's disease. Brain Commun 2023; 5:fcad271. [PMID: 37946794 PMCID: PMC10631860 DOI: 10.1093/braincomms/fcad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/02/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
Essential tremor and Parkinson's disease patients may present with various tremor types. Overlapping tremor features can be challenging to diagnosis and misdiagnosis is common. Although underlying neurodegenerative mechanisms are suggested, neuroimaging studies arrived at controversial results and often the different tremor types were not considered. We investigated whether different tremor types displayed distinct structural brain features. Structural MRI of 61 patients with essential tremor and 29 with tremor-dominant Parkinson's disease was analysed using a fully automated artificial-intelligence-based brain volumetry to compare volumes of several cortical and subcortical regions. Furthermore, essential tremor subgroups with and without rest tremor or more pronounced postural and kinetic tremor were investigated. Deviations from an internal reference collective of age- and sex-adjusted healthy controls and volumetric differences between groups were examined; regression analysis was used to determine the contribution of disease-related factors on volumetric measurements. Compared with healthy controls, essential tremor and tremor-dominant Parkinson's disease patients displayed deviations in the occipital lobes, hippocampus, putamen, pallidum and mesencephalon while essential tremor patients exhibited decreased volumes within the nucleus caudatus and thalamus. Analysis of covariance revealed similar volumetric patterns in both diseases. Essential tremor patients without rest tremor showed a significant atrophy within the thalamus compared to tremor-dominant Parkinson's disease and atrophy of the mesencephalon and putamen were found in both subgroups compared to essential tremor with rest tremor. Disease-related factors contribute to volumes of occipital lobes in both diseases and to volumes of temporal lobes in essential tremor and the putamen in Parkinson's disease. Fully automated artificial-intelligence-based volumetry provides a fast and rater-independent method to investigate brain volumes in different neurological disorders and allows comparisons with an internal reference collective. Our results indicate that essential tremor and tremor-dominant Parkinson's disease share structural changes, indicative of neurodegenerative mechanisms, particularly of the basal-ganglia-thalamocortical circuitry. A discriminating, possibly disease-specific involvement of the thalamus was found in essential tremor patients without rest tremor and the mesencephalon and putamen in tremor-dominant Parkinson's disease and essential tremor without rest tremor.
Collapse
Affiliation(s)
- Veronika Purrer
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center of Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Emily Pohl
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia M Lueckel
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Malte Sauer
- Department of Neuroradiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Radbruch
- German Center of Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center of Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Frederic Carsten Schmeel
- German Center of Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
8
|
Luo B, Qiu C, Chang L, Lu Y, Dong W, Liu D, Xue C, Yan J, Zhang W. Altered brain network centrality in Parkinson's disease patients after deep brain stimulation: a functional MRI study using a voxel-wise degree centrality approach. J Neurosurg 2023; 138:1712-1719. [PMID: 36334296 DOI: 10.3171/2022.9.jns221640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE After deep brain stimulation (DBS), patients with Parkinson's disease (PD) show improved motor symptoms and decreased verbal fluency, an effect that occurs before the initiation of DBS in the subthalamic nucleus. However, the underlying mechanism remains unclear. This study aimed to evaluate the effects of DBS on whole-brain degree centrality (DC) and seed-based functional connectivity (FC) in PD patients. METHODS The authors obtained resting-state functional MRI data of 28 PD patients before and after DBS surgery. All patients underwent MRI scans in the off-stimulation state. The DC method was used to evaluate the effects of DBS on whole-brain FC at the voxel level. Seed-based FC analysis was used to examine network function changes after DBS. RESULTS After DBS surgery, PD patients showed significantly weaker DC values in the left middle temporal gyrus, left supramarginal gyrus, and left middle frontal gyrus, but significantly stronger DC values in the midbrain, left precuneus, and right precentral gyrus. FC analysis revealed decreased FC values within the default mode network (DMN). CONCLUSIONS This study demonstrated that the DC of DMN-related brain regions decreased in PD patients after DBS surgery, whereas the DC of the motor cortex increased. These findings provide new evidence for the neural effects of DBS on voxel-based whole-brain networks in PD patients.
Collapse
Affiliation(s)
- Bei Luo
- Departments of1Functional Neurosurgery
| | - Chang Qiu
- Departments of1Functional Neurosurgery
| | - Lei Chang
- Departments of1Functional Neurosurgery
| | - Yue Lu
- Departments of1Functional Neurosurgery
| | | | | | | | - Jun Yan
- 4Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
9
|
Si Q, Gan C, Zhang H, Cao X, Sun H, Wang M, Wang L, Yuan Y, Zhang K. Altered dynamic functional network connectivity in levodopa-induced dyskinesia of Parkinson's disease. CNS Neurosci Ther 2022; 29:192-201. [PMID: 36229900 PMCID: PMC9804048 DOI: 10.1111/cns.13994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS The aim of this study was to clarify the dynamic neural activity of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD). METHODS Using dynamic functional network connectivity (dFNC) analysis, we evaluated 41 PD patients with LID (LID group) and 34 PD patients without LID (No-LID group). Group spatial independent component analysis and sliding-window approach were employed. Moreover, we applied a k-means clustering algorithm on windowed functional connectivity (FC) matrices to identify reoccurring FC patterns (i.e., states). RESULTS The optimal number of states was determined to be five, the so-called State 1, 2, 3, 4, and 5. In ON phase, compared with No-LID group, LID group occurred more frequently and dwelled longer in strongly connected State 1, characterized by strong positive connections between visual network (VIS) and sensorimotor network (SMN). When switching from OFF to ON phase, LID group occurred less frequently in State 3 and State 4. Meanwhile, LID group dwelled longer in State 2 and shorter in State 3. No-LID group occurred more frequently in State 5 and less frequently in State 3. Additionally, correlation analysis demonstrated that dyskinesia's severity was associated with frequency of occurrence and dwell time in State 2, dominated by inferior frontal cortex in cognitive executive network (CEN). CONCLUSION Using dFNC analysis, we found that dyskinesia may be related to the dysfunctional inhibition of CEN on motor loops and excessive excitation of VIS and SMN, which provided evidence of the changes in brain dynamics associated with the occurrence of dyskinesia.
Collapse
Affiliation(s)
- Qianqian Si
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Caiting Gan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Heng Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xingyue Cao
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Huimin Sun
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of RadiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lina Wang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yongsheng Yuan
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kezhong Zhang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
10
|
Xiong Y, Lin J, Bian X, Lu H, Zhou J, Zhang D, Pan L, Lou X. Treatment-Specific Network Modulation of MRI-Guided Focused Ultrasound Thalamotomy in Essential Tremor : Modulation of ET-Related Network by MRgFUS Thalamotomy. Neurotherapeutics 2022; 19:1920-1931. [PMID: 36085538 PMCID: PMC9462640 DOI: 10.1007/s13311-022-01294-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
MRI-guided focused ultrasound (MRgFUS) thalamotomy is a novel, effective, and non-invasive treatment for essential tremor (ET). However, the network mediating MRgFUS in treating ET is not precisely known. This study aimed to identify the disease-specific network associated with the therapeutic effects of MRgFUS thalamotomy on ET and investigate its regional characteristics and genetic signatures to gain insights into the neurobiological mechanism of ET and MRgFUS thalamotomy. Twenty-four ET patients treated with MRgFUS thalamotomy underwent resting-state functional MRI at baseline and postoperative 6 months to measure the fractional amplitude of low-frequency fluctuation (fALFF). Ordinal trends canonical variates analysis (OrT/CVA) was performed on the within-subject fALFF data to identify the ET-related network. Genetic functional enrichment analysis was conducted to study the genetic signatures of this ET-related network using brain-wide gene expression data. OrT/CVA analysis revealed a significant ET-related network for which subject expression showed consistent increases after surgery. The treatment-induced increases in subject expression were significantly correlated with concurrent tremor improvement. This network was characterized by increased activity in the sensorimotor cortex and decreased activity in the posterior cingulate cortex. It was correlated with an expression map of a weighted combination genes enriched for mitochondria relevant ontology terms. This study demonstrates that the therapeutic effects of MRgFUS thalamotomy on ET are associated with modulating a distinct ET-related network which may be driven by mitochondria relevant neurobiological mechanism. Quantification of treatment-induced modulation on the ET-related network can provide an objective marker for evaluating the efficacy of MRgFUS thalamotomy.
Collapse
Affiliation(s)
- Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Xiangbing Bian
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Jiayou Zhou
- Department of Neurosurgery, Chinese PLA General Hospital/Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Dekang Zhang
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital/Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital/Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
11
|
Sharifi S, Luft F, de Boer L, Buijink AWG, Mugge W, Schouten AC, Heida T, Bour LJ, van Rootselaar AF. Closing the loop: Novel quantitative fMRI approach for manipulation of the sensorimotor loop in tremor. Neuroimage 2022; 262:119554. [PMID: 35963505 DOI: 10.1016/j.neuroimage.2022.119554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 10/31/2022] Open
Abstract
Tremor is thought to be an effect of oscillatory activity within the sensorimotor network. To date, the underlying pathological brain networks are not fully understood. Disentangling tremor activity from voluntary motor output and sensorimotor feedback systems is challenging. To better understand the intrinsic sensorimotor fingerprint underlying tremor, we aimed to disentangle the sensorimotor system into driving (motor) and feedback/compensatory (sensory) neuronal involvement, and aimed to pinpoint tremor activity in essential tremor (ET) and tremor-dominant Parkinson's disease (PD) with a novel closed-loop approach. Eighteen ET patients, 14 tremor-dominant PD patients, and 18 healthy controls were included. An MR-compatible wrist manipulator was employed during functional MRI (fMRI) while muscle activity during (in)voluntary movements was concurrently recorded using electromyography (EMG). Tremor was quantified based on EMG and correlated to brain activity. Participants performed three tasks: an active wrist motor task, a passive wrist movement task, and rest (no wrist movement). The results in healthy controls proved that our experimental paradigm activated the expected motor and sensory networks separately using the active (motor) and passive (sensory) task. ET patients showed similar patterns of activation within the motor and sensory networks. PD patients had less activity during the active motor task in the cerebellum and basal ganglia compared to ET and healthy controls. EMG showed that in ET, tremor fluctuations correlated positively with activity in the inferior olive region, and that in PD tremor fluctuations correlated positively with cerebellar activity. Our novel approach with an MR-compatible wrist manipulator, allowed to investigate the involvement of the motor and sensory networks separately, and as such to better understand tremor pathophysiology. In ET sensorimotor network function did not differ from healthy controls. PD showed less motor-related activity. Focusing on tremor, our results indicate involvement of the inferior olive in ET tremor modulation, and cerebellar involvement in PD tremor modulation.
Collapse
Affiliation(s)
- S Sharifi
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, Amsterdam 1100 DD, the Netherlands; BIC Brain Imaging Center, Academic Medical Center, Amsterdam, the Netherlands.
| | - F Luft
- Department of Biomedical Signals and Systems, TechMed Centre, University of Twente, Enschede, the Netherlands; BIC Brain Imaging Center, Academic Medical Center, Amsterdam, the Netherlands
| | - L de Boer
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, Amsterdam 1100 DD, the Netherlands
| | - A W G Buijink
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, Amsterdam 1100 DD, the Netherlands; BIC Brain Imaging Center, Academic Medical Center, Amsterdam, the Netherlands
| | - W Mugge
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - A C Schouten
- Faculty of Mechanical, Maritime and Materials Engineering, Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - T Heida
- Department of Biomedical Signals and Systems, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - L J Bour
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, Amsterdam 1100 DD, the Netherlands
| | - A F van Rootselaar
- Department of Neurology and Clinical Neurophysiology, Amsterdam UMC, Amsterdam Neuroscience, University of Amsterdam, Meibergdreef 9, D2-113, P.O. Box 22660, Amsterdam 1100 DD, the Netherlands; BIC Brain Imaging Center, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Cerebellar voxel-based morphometry in essential tremor. J Neurol 2022; 269:6029-6035. [DOI: 10.1007/s00415-022-11291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
|
13
|
Erro R, Sorrentino C, Russo M, Barone P. Essential tremor plus rest tremor: current concepts and controversies. J Neural Transm (Vienna) 2022; 129:835-846. [PMID: 35672518 PMCID: PMC9217824 DOI: 10.1007/s00702-022-02516-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Since the initial description of Essential Tremor (ET), the entity of ET with rest tremor has proven to be a controversial concept. Some authors argued it could be a late manifestation of ET, others suggested it could be a variant of ET, yet others suggested it could represent a transitional state between ET and Parkinson's disease. The novel tremor classification has proposed the construct of ET-plus to differentiate patients with rest tremor from pure ET. However, there is no clarity of what ET-plus rest tremor represents. With the aim of shedding light on this controversial entity, we have, therefore, systematically reviewed all clinical, electrophysiological, imaging and anatomopathological studies indexed in the Medline database published both before and after the new tremor classification and involving patients with ET-plus rest tremor. Forty-four studies involving 4028 patients were included in this review and analyzed in detail by means of descriptive statistics. The results of the current review suggest that ET-plus rest tremor is a heterogenous group of conditions: thus, rest tremor might represent a late feature of ET, might reflect a different disorder with higher age at onset and lower dependance on genetic susceptibility than ET, might suggest the development of Parkinson's disease or might indicate a misdiagnosis of ET. The reviewed lines of evidence refuse recent claims arguing against the construct of ET-plus, which should be viewed as a syndrome with different possible underpinnings, and highlights methodological issues to be solved in future research.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Via Allende, Baronissi, SA, Italy.
| | | | - Maria Russo
- University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Salerno, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Via Allende, Baronissi, SA, Italy
| |
Collapse
|
14
|
Zhang X, Tao L, Chen H, Zhang X, Wang H, He W, Li Q, Lv F, Luo T, Luo J, Man Y, Xiao Z, Cao J, Fang W. Combined Intrinsic Local Functional Connectivity With Multivariate Pattern Analysis to Identify Depressed Essential Tremor. Front Neurol 2022; 13:847650. [PMID: 35620789 PMCID: PMC9127760 DOI: 10.3389/fneur.2022.847650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAlthough depression is one of the most common neuropsychiatric symptoms in essential tremor (ET), the diagnosis biomarker and intrinsic brain activity remain unclear. We aimed to combine multivariate pattern analysis (MVPA) with local brain functional connectivity to identify depressed ET.MethodsBased on individual voxel-level local brain functional connectivity (regional homogeneity, ReHo) mapping from 41 depressed ET, 43 non-depressed ET, and 45 healthy controls (HCs), the binary support vector machine (BSVM) and multiclass Gaussian Process Classification (MGPC) algorithms were used to identify depressed ET patients from non-depressed ET and HCs, the accuracy and permutations test were used to assess the classification performance.ResultsThe MGPC algorithm was able to classify the three groups (depressed ET, non-depressed ET, and HCs) with a total accuracy of 84.5%. The BSVM algorithm achieved a better classification performance with total accuracy of 90.7, 88.64, and 90.48% for depressed ET vs. HCs, non-depressed ET vs. HCs, and depressed ET vs. non-depressed ET, and the sensitivity for them at 80.49, 76.64, and 80.49%, respectively. The significant discriminative features of depressed ET vs. HCs were primarily located in the cerebellar-motor-prefrontal gyrus-anterior cingulate cortex pathway, and for depressed ET vs. non-depressed ET located in the cerebellar-prefrontal gyrus-anterior cingulate cortex circuits. The partial correlation showed that the ReHo values in the bilateral middle prefrontal gyrus (positive) and the bilateral cerebellum XI (negative) were significantly correlated with clinical depression severity.ConclusionOur findings suggested that combined individual ReHo maps with MVPA not only could be used to identify depressed ET but also help to reveal the intrinsic brain activity changes and further act as the potential diagnosis biomarker in depressed ET patients.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiyue Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hansheng Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wanlin He
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Man
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Cao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weidong Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Weidong Fang
| |
Collapse
|
15
|
Pietracupa S, Bologna M, Tommasin S, Berardelli A, Pantano P. The Contribution of Neuroimaging to the Understanding of Essential Tremor Pathophysiology: a Systematic Review. THE CEREBELLUM 2021; 21:1029-1051. [PMID: 34657271 DOI: 10.1007/s12311-021-01335-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/14/2022]
Abstract
Essential tremor (ET) is one of the most common movement disorders. Over the last 10 years, magnetic resonance imaging (MRI) has shed light on the structural and functional abnormalities possibly involved in ET pathophysiology. In this systematic review, we aimed to identify the cortical and subcortical structures involved and the role that different brain areas play in the pathophysiology of motor and non-motor ET features. We found that structural (grey and white matter) cerebellar damage and connectivity alterations between the cerebellum and various cortical areas play a role in both motor and non-motor symptoms of ET. In particular, many studies found an association between MRI findings and non-motor symptoms.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, Via Atinense 18, Pozzilli, IS, Italy.,Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Silvia Tommasin
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Via Atinense 18, Pozzilli, IS, Italy.,Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- IRCCS Neuromed, Via Atinense 18, Pozzilli, IS, Italy.,Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Parkinsonism and tremor syndromes. J Neurol Sci 2021; 433:120018. [PMID: 34686357 DOI: 10.1016/j.jns.2021.120018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/06/2021] [Accepted: 09/29/2021] [Indexed: 01/22/2023]
Abstract
Tremor, the most common movement disorder, may occur in isolation or may co-exist with a variety of other neurologic and movement disorders including parkinsonism, dystonia, and ataxia. When associated with Parkinson's disease, tremor may be present at rest or as an action tremor overlapping in phenomenology with essential tremor. Essential tremor may be associated not only with parkinsonism but other neurological disorders, suggesting the possibility of essential tremor subtypes. Besides Parkinson's disease, tremor can be an important feature of other parkinsonian disorders, such as atypical parkinsonism and drug-induced parkinsonism. In addition, tremor can be a prominent feature in patients with other movement disorders such as fragile X-associated tremor/ataxia syndrome, and Wilson's disease in which parkinsonian features may be present. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
|
17
|
Luo B, Lu Y, Qiu C, Dong W, Xue C, Zhang L, Liu W, Zhang W. Altered Spontaneous Neural Activity and Functional Connectivity in Parkinson's Disease With Subthalamic Microlesion. Front Neurosci 2021; 15:699010. [PMID: 34354566 PMCID: PMC8329380 DOI: 10.3389/fnins.2021.699010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Transient improvement in motor symptoms are immediately observed in patients with Parkinson's disease (PD) after an electrode has been implanted into the subthalamic nucleus (STN) for deep brain stimulation (DBS). This phenomenon is known as the microlesion effect (MLE). However, the underlying mechanisms of MLE is poorly understood. Purpose We utilized resting state functional MRI (rs-fMRI) to evaluate changes in spontaneous brain activity and networks in PD patients during the microlesion period after DBS. Method Overall, 37 PD patients and 13 gender- and age-matched healthy controls (HCs) were recruited for this study. Rs-MRI information was collected from PD patients three days before DBS and one day after DBS, whereas the HCs group was scanned once. We utilized the amplitude of low-frequency fluctuation (ALFF) method in order to analyze differences in spontaneous whole-brain activity among all subjects. Furthermore, functional connectivity (FC) was applied to investigate connections between other brain regions and brain areas with significantly different ALFF before and after surgery in PD patients. Result Relative to the PD-Pre-DBS group, the PD-Post-DBS group had higher ALFF in the right putamen, right inferior frontal gyrus, right precentral gyrus and lower ALFF in right angular gyrus, right precuneus, right posterior cingulate gyrus (PCC), left insula, left middle temporal gyrus (MTG), bilateral middle frontal gyrus and bilateral superior frontal gyrus (dorsolateral). Functional connectivity analysis revealed that these brain regions with significantly different ALFF scores demonstrated abnormal FC, largely in the temporal, prefrontal cortices and default mode network (DMN). Conclusion The subthalamic microlesion caused by DBS in PD was found to not only improve the activity of the basal ganglia-thalamocortical circuit, but also reduce the activity of the DMN and executive control network (ECN) related brain regions. Results from this study provide new insights into the mechanism of MLE.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Holtbernd F, Shah NJ. Imaging the Pathophysiology of Essential Tremor-A Systematic Review. Front Neurol 2021; 12:680254. [PMID: 34220687 PMCID: PMC8244929 DOI: 10.3389/fneur.2021.680254] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022] Open
Abstract
Background: The pathophysiology underlying essential tremor (ET) still is poorly understood. Recent research suggests a pivotal role of the cerebellum in tremor genesis, and an ongoing controversy remains as to whether ET constitutes a neurodegenerative disorder. In addition, mounting evidence indicates that alterations in the gamma-aminobutyric acid neurotransmitter system are involved in ET pathophysiology. Here, we systematically review structural, functional, and metabolic neuroimaging studies and discuss current concepts of ET pathophysiology from an imaging perspective. Methods: We conducted a PubMed and Scopus search from 1966 up to December 2020, entering essential tremor in combination with any of the following search terms and their corresponding abbreviations: positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and gamma-aminobutyric acid (GABA). Results: Altered functional connectivity in the cerebellum and cerebello-thalamico-cortical circuitry is a prevalent finding in functional imaging studies. Reports from structural imaging studies are less consistent, and there is no clear evidence for cerebellar neurodegeneration. However, diffusion tensor imaging robustly points toward microstructural cerebellar changes. Radiotracer imaging suggests that the dopaminergic axis is largely preserved in ET. Similarly, measurements of nigral iron content and neuromelanin are unremarkable in most studies; this is in contrast to Parkinson's disease (PD). PET and MRS studies provide limited evidence for cerebellar and thalamic GABAergic dysfunction. Conclusions: There is robust evidence indicating that the cerebellum plays a key role within a multiple oscillator tremor network which underlies tremor genesis. However, whether cerebellar dysfunction relies on a neurodegenerative process remains unclear. Dopaminergic and iron imaging do not suggest a substantial overlap of ET with PD pathophysiology. There is limited evidence for alterations of the GABAergic neurotransmitter system in ET. The clinical, demographical, and genetic heterogeneity of ET translates into neuroimaging and likely explains the various inconsistencies reported.
Collapse
Affiliation(s)
- Florian Holtbernd
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Juelich GmbH, Juelich, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
- Department of Neurology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine (INM-4/INM-11), Forschungszentrum Juelich GmbH, Juelich, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Juelich GmbH, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
- Department of Neurology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
19
|
Kaviani S, Shahab S, Sheikhi M, Khaleghian M, Al Saud S. Characterization of the binding affinity between some anti-Parkinson agents and Mn2+, Fe3+ and Zn2+ metal ions: A DFT insight. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Taximaimaiti R, Wang XP. Comparing the Clinical and Neuropsychological Characteristics of Parkinson's Disease With and Without Freezing of Gait. Front Neurosci 2021; 15:660340. [PMID: 33986641 PMCID: PMC8110824 DOI: 10.3389/fnins.2021.660340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Freezing of gait (FOG) is one of the most common walking problems in Parkinson’s disease (PD). Impaired cognitive function is believed to play an important role in developing and aggravating FOG in PD. But some evidence suggests that motor function discrepancy may affect testing results. Therefore, we think it is necessary for PD-FOG(+) and PD-FOG(−) patients to complete neuropsychological tests under similar motor conditions. Methods This study recruited 44 idiopathic PD patients [PD-FOG(+) n = 22, PD-FOG(−) n = 22] and 20 age-matched healthy controls (HC). PD-FOG(+) and PD-FOG(−) patients were matched for age, year of education, and Hoehn and Yahr score (H&Y). All participants underwent a comprehensive battery of neuropsychological assessment, and demographical and clinical information was also collected. Results PD patients showed poorer cognitive function, higher risks of depression and anxiety, and more neuropsychiatric symptoms compared with HC. When controlling for age, years of education, and H&Y, there were no statistical differences in cognitive function between PD-FOG(+) and PD-FOG(−) patients. But PD-FOG(+) patients had worse motor and non-motor symptoms than PD-FOG(−) patients. PD patients whose motor symptoms initiated with rigidity and initiated unilaterally were more likely to experience FOG. Conclusion Traditional neuropsychological testing may not be sensitive enough to detect cognitive impairment in PD. Motor symptoms initiated with rigidity and initiated unilaterally might be an important predictor of FOG.
Collapse
Affiliation(s)
- Reyisha Taximaimaiti
- Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|