1
|
Peng L, Li J, Xu L, Zhang Z, Wang Z, Zhong X, Wang L, Shao Y, Yue Y. Reduced visual and middle temporal gyrus activity correlates with years of exercise in athletes using resting-state fMRI. J Neuroimaging 2025; 35:e13249. [PMID: 39501905 DOI: 10.1111/jon.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND AND PURPOSE Different types of physical training can lead to changes in brain activity and function, and these changes can vary depending on the type of training. However, it remains unclear whether there are commonalities in how different types of training affect brain activity and function. The purpose of this study is to compare the brain activity states of professional athletes with those of ordinary university students and to explore the relationship between training and differences in brain activity states. METHODS This study primarily utilizes resting-state MRI and the degree centrality metric to investigate spontaneous brain activity in 86 high-level athletes with extensive training and 74 age- and gender-matched nonathletes. Additionally, a correlation analysis between brain activity in relevant regions and years of training was conducted. RESULTS The analysis revealed that, compared to nonathletes, high-level athletes exhibited reduced activity in the Calcarine (a visual area) and Middle Temporal Gyrus. Furthermore, changes in the activity of the Calcarine and Middle Temporal Gyrus were significantly correlated with the number of years of professional training. CONCLUSIONS The study results indicate that long-term physical training is associated with changes in brain activity in athletes, providing insights into the neural mechanisms underlying behavioral performance in professional athletes.
Collapse
Affiliation(s)
- Lei Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jiyuan Li
- Department of Magnetic Resonance Imaging, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing, China
| | - Zheyuan Zhang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Zexuan Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Xiao Zhong
- School of Psychology, Beijing Sport University, Beijing, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yunlong Yue
- Department of Magnetic Resonance Imaging, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Hassan J, Péran P, Yrondi A. Neuroimaging correlates of cognitive disorders secondary to electroconvulsive therapy: A systematic review. L'ENCEPHALE 2024:S0013-7006(24)00201-X. [PMID: 39510874 DOI: 10.1016/j.encep.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES Electroconvulsive therapy is known as an efficient therapy, which is sometimes recommended for the management of severe and resistant depression. However, ECT is associated with cognitive adverse effects. The study of the neurobiological correlates of the cognitive adverse effects of ECT has been covered in few published reviews. However, these mechanisms have been investigated in an increasing number of studies in recent years, particularly in neuroimaging. This systematic review of the literature focuses on correlates between changes in structural or functional neuroimaging and impairment of cognitive functions during the ECT treatment. METHODS We conducted a systematic review of the literature using PRISMA methodology. Searches were performed on the Medline and Web of Science databases using the following equation: "electroconvulsive therapy AND (MRI OR fMRI OR DTI OR neuroimaging) AND depression AND cogniti*". RESULTS This article highlights the significant heterogeneity of the results. In structural imaging, approximately 50% of the studies did not report any correlation between volumetric changes and neuropsychological changes. In studies that did highlight a correlation, the latter was mainly reported with changes in the hippocampus. From a functional perspective, we highlighted a correlation between changes in the connectivity of the hippocampal region and cognition. CONCLUSION These results demonstrate a growing interest in understanding the neurobiological mechanisms underlying cognitive disorders secondary to ECT treatment. The ultimate aim behind this understanding is to adopt a more effective prevention strategy vis-à-vis these adverse effects.
Collapse
Affiliation(s)
- Johann Hassan
- Service de Psychiatrie et de Psychologie Médicale (Department of Psychiatry and Medical Psychology), Centre Expert Dépression Résistante FondaMental, Hôpital Purpan, CHU de Toulouse, Toulouse, France; Inserm, UPS, Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Toulouse, France
| | - Patrice Péran
- Inserm, UPS, Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Toulouse, France
| | - Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale (Department of Psychiatry and Medical Psychology), Centre Expert Dépression Résistante FondaMental, Hôpital Purpan, CHU de Toulouse, Toulouse, France; Inserm, UPS, Toulouse NeuroImaging Centre (ToNIC), Université de Toulouse, Toulouse, France.
| |
Collapse
|
3
|
Barreiros AR, Breukelaar IA, Prentice A, Mayur P, Tomimatsu Y, Funayama K, Foster S, Malhi GS, Arns M, Harris A, Korgaonkar MS. Intra- and Inter-Network connectivity of the default mode network differentiates Treatment-Resistant depression from Treatment-Sensitive depression. Neuroimage Clin 2024; 43:103656. [PMID: 39180979 PMCID: PMC11387369 DOI: 10.1016/j.nicl.2024.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Understanding why some patients with depression remain resistant to antidepressant medication could be elucidated by investigating their associated neural features. Although research has consistently demonstrated abnormalities in the anterior cingulate cortex (ACC) - a region that is part of the default mode network (DMN) - in treatment-resistant depression (TRD), a considerable research gap exists in discerning how these neural networks distinguish TRD from treatment-sensitive depression (TSD). We aimed to evaluate the resting-state functional connectivity (rsFC) of the ACC with other regions of the DMN to better understand the role of this structure in the pathophysiology of TRD. 35 TRD patients, 35 TSD patients, and 38 healthy controls (HC) underwent a resting-state functional MRI protocol. Seed-based functional connectivity analyses were performed, comparing the three groups for the connectivity between two subregions of the ACC (the subgenual ACC (sgACC) and the rostral ACC (rACC)) and the DMN (p < 0.05 FWE corrected). Furthermore, inter-network connectivity of the DMN with other neural networks was explored by independent component (ICA) analyses (p < 0.01, FDR corrected). The results demonstrated hyperconnectivity between the rACC and the posterior cingulate cortex in TRD relative to TSD and HC (F(2,105) = 5.335, p < 0.05). ICA found DMN connectivity to regions of the visual network (TRDTSD), differentiating the two clinical groups. These results provide confirmatory evidence of DMN hyperconnectivity and preliminary evidence for its interactions with other neural networks as key neural mechanisms underlying treatment non-responsiveness.
Collapse
Affiliation(s)
- Ana Rita Barreiros
- Brain Dynamics Centre, Westmead Institute for Medical Research, Sydney, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia; The Black Dog Institute, Sydney, Australia.
| | | | - Amourie Prentice
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht Universtiy, Maastricht, the Netherlands; Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands; Synaeda Psycho Medisch Centrum, Leeuwarden, the Netherlands
| | - Prashanth Mayur
- Mood Disorders Unit, Cumberland Hospital, Western Sydney Local Health District, Parramatta, Australia
| | | | - Kenta Funayama
- Research, Takeda Pharmaceutical Company Ltd., Kanagawa, Japan
| | - Sheryl Foster
- Department of Radiology, Westmead Hospital, Westmead, NSW, Australia; School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
| | - Gin S Malhi
- Academic Department of Psychiatry, Kolling Institute, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; CADE Clinic and Mood-T, Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, Australia
| | - Martijn Arns
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht Universtiy, Maastricht, the Netherlands; Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands
| | - Anthony Harris
- Brain Dynamics Centre, Westmead Institute for Medical Research, Sydney, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Specialty of Psychiatry, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, Sydney, Australia; School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW Australia
| |
Collapse
|
4
|
Chen C, Wang M, Yu T, Feng W, Xu Y, Ning Y, Zhang B. Habenular functional connections are associated with depression state and modulated by ketamine. J Affect Disord 2024; 345:177-185. [PMID: 37879411 DOI: 10.1016/j.jad.2023.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Depression is a widespread mental health disorder with complex neurobiological underpinnings. The habenula, known as the 'anti-reward center', is thought to play a pivotal role in the pathophysiology of depression. This study aims to elucidate the association between the functional connections of the habenula and depression severity and to explore the modulation of these connections by ketamine. METHODS We studied 177 participants from a 7-T resting-state functional magnetic resonance imaging subset of the Human Connectome Project dataset to determine the associations between the functional connections of the habenula and depression. Additionally, we analyzed 60 depressed patients from our ketamine database to conduct a preliminary study on alterations in the functional connections of the habenula after ketamine infusions. We also investigated whether the baseline functional connectivity of the habenula is linked to subsequent improvement in depression. RESULTS We found that functional connections between the habenula and the substantia nigra, as well as the ventral tegmental area were negatively correlated with depression scores and elevated after ketamine infusions. Furthermore, the connection between the right habenula and the right substantia nigra was negatively associated with the improvement of depression. LIMITATIONS The Human Connectome Project dataset primarily consists of data from healthy participants, with varying levels of depression scores. CONCLUSION These results suggest that the habenula may facilitate depression by suppressing dopamine reward centers, and ketamine may relieve depression by disinhibiting these dopaminergic regions. This study may enhance our understanding of the neural underpinnings of depression and ketamine's antidepressant effects.
Collapse
Affiliation(s)
- Chengfeng Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingqia Wang
- Institute of Mental Health, Peking University, Beijing, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Tong Yu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanting Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingyi Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Kyuragi Y, Oishi N, Yamasaki S, Hazama M, Miyata J, Shibata M, Fujiwara H, Fushimi Y, Murai T, Suwa T. Information flow and dynamic functional connectivity during electroconvulsive therapy in patients with depression. J Affect Disord 2023; 328:141-152. [PMID: 36801417 DOI: 10.1016/j.jad.2023.02.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Electroconvulsive therapy is effectively used for treatment-resistant depression; however, its neural mechanism is largely unknown. Resting-state functional magnetic resonance imaging is promising for monitoring outcomes of electroconvulsive therapy for depression. This study aimed to explore the imaging correlates of the electroconvulsive therapy effects on depression using Granger causality analysis and dynamic functional connectivity analyses. METHODS We performed advanced analyses of resting-state functional magnetic resonance imaging data at the beginning and intermediate stages and end of the therapeutic course to identify neural markers that reflect or predict the therapeutic effects of electroconvulsive therapy on depression. RESULTS We demonstrated that information flow between the functional networks analyzed by Granger causality changes during electroconvulsive therapy, and this change was correlated with the therapeutic outcome. Information flow and the dwell time (an index reflecting the temporal stability of functional connectivity) before electroconvulsive therapy are correlated with depressive symptoms during and after treatment. LIMITATIONS First, the sample size was small. A larger group is needed to confirm our findings. Second, the influence of concomitant pharmacotherapy on our results was not fully addressed, although we expected it to be minimal because only minor changes in pharmacotherapy occurred during electroconvulsive therapy. Third, different scanners were used the groups, although the acquisition parameters were the same; a direct comparison between patient and healthy participant data was not possible. Thus, we presented the data of the healthy participants separately from that of the patients as a reference. CONCLUSIONS These results show the specific properties of functional brain connectivity.
Collapse
Affiliation(s)
- Yusuke Kyuragi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan.
| | - Shimpei Yamasaki
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masaaki Hazama
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mami Shibata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hironobu Fujiwara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Artificial Intelligence Ethics and Society Team, RIKEN Center for Advanced Intelligence Project, Saitama 351-0198, Japan; The General Research Division, Research Center on Ethical, Legal and Social Issues, Osaka University, Osaka 565-0871, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Taro Suwa
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
6
|
Aftanas LI, Filimonova EA, Anisimenko MS, Berdyugina DA, Rezakova MV, Simutkin GG, Bokhan NA, Ivanova SA, Danilenko KV, Lipina TV. The habenular volume and PDE7A allelic polymorphism in major depressive disorder: preliminary findings. World J Biol Psychiatry 2023; 24:223-232. [PMID: 35673941 DOI: 10.1080/15622975.2022.2086297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The habenula is a brain structure implicated in depression, yet with unknown molecular mechanisms. Several phosphodiesterases (PDEs) have been associated with a risk of depression. Although the role of PDE7A in the brain is unknown, it has enriched expression in the medial habenula, suggesting that it may play a role in depression. METHODS We analysed: (1) habenula volume assessed by 3-T magnetic resonance imaging (MRI) in 84 patients with major depressive disorder (MDD) and 41 healthy controls; (2) frequencies of 10 single nucleotide polymorphisms (SNPs) in PDE7A gene in 235 patients and 41 controls; and (3) both indices in 80 patients and 27 controls. The analyses considered gender, age, body mass index and season of the MRI examination. RESULTS The analysis did not reveal habenula volumetric changes in MDD patients regardless of PDE7A SNPs. However, in the combined group, the carriers of one or more mutations among 10 SNPs in the PDE7A gene had a lower volume of the left habenula (driven mainly by rs972362 and rs138599850 mutations) and consequently had the reduced habenular laterality index in comparison with individuals without PDE7A mutations. CONCLUSIONS Our findings suggest the implication of the PDE7A gene into mechanisms determining the habenula structure.
Collapse
Affiliation(s)
- Lyubomir I Aftanas
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | | - German G Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay A Bokhan
- National Research Tomsk State University, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | | | | |
Collapse
|
7
|
Cerebello-cerebral Functional Connectivity Networks in Major Depressive Disorder: a CAN-BIND-1 Study Report. CEREBELLUM (LONDON, ENGLAND) 2023; 22:26-36. [PMID: 35023065 DOI: 10.1007/s12311-021-01353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 02/01/2023]
Abstract
Neuroimaging studies have demonstrated aberrant structure and function of the "cognitive-affective cerebellum" in major depressive disorder (MDD), although the specific role of the cerebello-cerebral circuitry in this population remains largely uninvestigated. The objective of this study was to delineate the role of cerebellar functional networks in depression. A total of 308 unmedicated participants completed resting-state functional magnetic resonance imaging scans, of which 247 (148 MDD; 99 healthy controls, HC) were suitable for this study. Seed-based resting-state functional connectivity (RsFc) analysis was performed using three cerebellar regions of interest (ROIs): ROI1 corresponded to default mode network (DMN)/inattentive processing; ROI2 corresponded to attentional networks, including frontoparietal, dorsal attention, and ventral attention; ROI3 corresponded to motor processing. These ROIs were delineated based on prior functional gradient analyses of the cerebellum. A general linear model was used to perform within-group and between-group comparisons. In comparison to HC, participants with MDD displayed increased RsFc within the cerebello-cerebral DMN (ROI1) and significantly elevated RsFc between the cerebellar ROI1 and bilateral angular gyrus at a voxel threshold (p < 0.001, two-tailed) and at a cluster level (p < 0.05, FDR-corrected). Group differences were non-significant for ROI2 and ROI3. These results contribute to the development of a systems neuroscience approach to the diagnosis and treatment of MDD. Specifically, our findings confirm previously reported associations between MDD, DMN, and cerebellum, and highlight the promising role of these functional and anatomical locations for the development of novel imaging-based biomarkers and targets for neuromodulation therapies. ClinicalTrials.gov TRN: NCT01655706; Date of Registration: August 2nd, 2012.
Collapse
|
8
|
Xue K, Chen J, Wei Y, Chen Y, Han S, Wang C, Zhang Y, Song X, Cheng J. Altered static and dynamic functional connectivity of habenula in first-episode, drug-naïve schizophrenia patients, and their association with symptoms including hallucination and anxiety. Front Psychiatry 2023; 14:1078779. [PMID: 36741115 PMCID: PMC9892902 DOI: 10.3389/fpsyt.2023.1078779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The pathogenesis of schizophrenia (SCH) is related to the dysfunction of monoamine neurotransmitters, and the habenula participates in regulating the synthesis and release of dopamine. We examined the static functional connectivity (sFC) and dynamic functional connectivity (dFC) of habenula in first-episode schizophrenia patients using resting state functional magnetic resonance imaging (rs-fMRI) in this study. METHODS A total of 198 first-Episode, drug-Naïve schizophrenia patients and 199 healthy controls (HC) underwent rs-fMRI examinations. The sFC and dFC analysis with habenula as seed was performed to produce a whole-brain diagram initially, which subsequently were compared between SCH and HC groups. Finally, the correlation analysis of sFC and dFC values with the Positive and Negative Symptom Scale (PANSS) were performed. RESULTS Compared with the HC groups, the left habenula showed increased sFC with the bilateral middle temporal gyrus, bilateral superior temporal gyrus, and right temporal pole in the SCH group, and the right habenula exhibited increased sFC with the left middle temporal gyrus, left superior temporal gyrus, and left angular gyrus. Additionally, compared with the HC group, the left habenula showed decreased dFC with the bilateral cuneus gyrus and bilateral calcarine gyrus in the SCH group. The PANSS negative sub-scores were positively correlated with the sFC values of the bilateral habenula with the bilateral middle temporal gyrus, superior temporal gyrus and angular gyrus. The PANSS general sub-scores were positively correlated with the sFC values of the right habenula with the left middle temporal gyrus and left superior temporal gyrus. The hallucination scores of PANSS were negatively correlated with the sFC values of the left habenula with the bilateral cuneus gyrus and bilateral calcarine gyrus; The anxiety scores of PANSS were positively correlated with the dFC values of the left habenula with the right temporal pole. CONCLUSION This study provides evidence that the habenula of the first-episode schizophrenia patients presented abnormal static functional connectivity with temporal lobe and angular gyrus, and additionally showed weakened stability of functional connectivity in occipital lobe. This abnormality is closely related to the symptoms of hallucination and anxiety in schizophrenia, which may indicate that the habenula involved in the pathophysiology of schizophrenia by affecting the dopamine pathway.
Collapse
Affiliation(s)
- Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Yang C, Xiao K, Ao Y, Cui Q, Jing X, Wang Y. The thalamus is the causal hub of intervention in patients with major depressive disorder: Evidence from the Granger causality analysis. Neuroimage Clin 2023; 37:103295. [PMID: 36549233 PMCID: PMC9795532 DOI: 10.1016/j.nicl.2022.103295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Major depressive disorder (MDD) is the leading mental disorder and afflicts more than 350 million people worldwide. The underlying neural mechanisms of MDD remain unclear, hindering the accurate treatment. Recent brain imaging studies have observed functional abnormalities in multiple brain regions in patients with MDD, identifying core brain regions is the key to locating potential therapeutic targets for MDD. The Granger causality analysis (GCA) measures directional effects between brain regions and, therefore, can track causal hubs as potential intervention targets for MDD. We reviewed literature employing GCA to investigate abnormal brain connections in patients with MDD. The total degree of effective connections in the thalamus (THA) is more than twice that in traditional targets such as the superior frontal gyrus and anterior cingulate cortex. Altered causal connections in patients with MDD mainly included enhanced bottom-up connections from the thalamus to various cortical and subcortical regions and reduced top-down connections from these regions to the THA, indicating excessive uplink sensory information and insufficient downlink suppression information for negative emotions. We suggest that the thalamus is the most crucial causal hub for MDD, which may serve as the downstream target for non-invasive brain stimulation and medication approaches in MDD treatment.
Collapse
Affiliation(s)
- Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Kunchen Xiao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu 610052, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
10
|
Wang M, Chen X, Hu Y, Zhou Y, Wang C, Zheng W, Liu W, Lan X, Ning Y, Zhang B. Functional connectivity between the habenula and default mode network and its association with the antidepressant effect of ketamine. Depress Anxiety 2022; 39:352-362. [PMID: 34964207 DOI: 10.1002/da.23238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recently, an animal model for depression has shown that ketamine, an N-methyl- d-aspartate receptor (NMDAR) antagonist, elicits a rapid-acting antidepressant effect by blocking NMDAR-dependent bursting in the lateral habenula (Hb). However, evidence from human studies remains scarce. METHODS This study explored the changes of resting-state functional connectivity (FC) of the Hb in responders and nonresponders who was diagnosed with unipolar or bipolar depression before and after ketamine treatment. The response was defined as a ≥50% reduction in the total MADRS score at Day 13 (24 h following the sixth infusion) in comparison with the baseline score. Correlation analyses were performed to identify an association between symptom improvement and the signals of the significantly different brain regions detected in the above imaging analysis. RESULTS In the post-hoc region-of-interest analysis, an enhanced baseline FC between Hb and several hubs of the default mode network (including angulate cortex, precuneus, medial prefrontal cortex, and middle temporal cortex) was observed in responders (≥50% decrease in the Montgomery-Asberg Scale at 2 weeks) compared with nonresponders. CONCLUSIONS These pilot findings may suggest a potential neural mechanism by which ketamine exerts its robust antidepressant efficacy via downregulation of aberrant habenular FC with parts of the default mode network.
Collapse
Affiliation(s)
- Mingqia Wang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Chen
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiru Hu
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yangling Zhou
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Chengyu Wang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Zheng
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weijian Liu
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofeng Lan
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuping Ning
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zhang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Elias GJB, Germann J, Loh A, Boutet A, Pancholi A, Beyn ME, Bhat V, Woodside DB, Giacobbe P, Kennedy SH, Lozano AM. Habenular Involvement in Response to Subcallosal Cingulate Deep Brain Stimulation for Depression. Front Psychiatry 2022; 13:810777. [PMID: 35185654 PMCID: PMC8854862 DOI: 10.3389/fpsyt.2022.810777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The habenula (Hb) is a small, evolutionarily conserved epithalamic structure implicated in functions such as reward and mood regulation. Prior imaging work suggests that Hb's structural and functional properties may relate to treatment response in depression and other mood disorders. We used multimodal MRI techniques to investigate the potential involvement of Hb in response to subcallosal cingulate area deep brain stimulation (SCC-DBS) for treatment-resistant mood disorders. Using an automated segmentation technique, we compared Hb volume at baseline and at a subsequent post-operative timepoint (4.4 ± 3.0 years after surgery) in a cohort of 32 patients who received SCC-DBS. Clinical response to treatment (≥50% decrease in HAMD-17 from baseline to 12 months post-operation) was significantly associated with longitudinal Hb volume change: responders tended to have increased Hb volume over time, while non-responders showed decreased Hb volume (t = 2.4, p = 0.021). We additionally used functional MRI (fMRI) in a subcohort of SCC-DBS patients (n = 12) to investigate immediate within-patient changes in Hb functional connectivity associated with SCC-DBS stimulation. Active DBS was significantly associated with increased Hb connectivity to several prefrontal and corticolimbic regions (TFCE-adjusted p Bonferroni < 0.0001), many of which have been previously implicated in the neurocircuitry of depression. Taken together, our results suggest that Hb may play an important role in the antidepressant effect of SCC-DBS.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Centre for Mental Health and Krembil Research Centre, University Health Network, Toronto, ON, Canada
| | - D Blake Woodside
- Centre for Mental Health, University Health Network, Toronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sidney H Kennedy
- Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Cheng B, Zhou Y, Kwok VPY, Li Y, Wang S, Zhao Y, Meng Y, Deng W, Wang J. Altered Functional Connectivity Density and Couplings in Postpartum Depression with and Without Anxiety. Soc Cogn Affect Neurosci 2021; 17:756-766. [PMID: 34904174 PMCID: PMC9340108 DOI: 10.1093/scan/nsab127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
Postpartum depression (PPD) is the most common psychological health issue among women, which often comorbids with anxiety (PPD-A). PPD and PPD-A showed highly overlapping clinical symptoms. Identifying disorder-specific neurophysiological markers of PDD and PPD-A is important for better clinical diagnosis and treatments. Here, we performed functional connectivity density (FCD) and resting-state functional connectivity (rsFC) analyses in 138 participants (45 unmedicated patients with first-episode PPD, 31 PDD-A patients and 62 healthy postnatal women, respectively). FCD mapping revealed specifically weaker long-range FCD in right lingual gyrus (LG.R) for PPD patients and significantly stronger long-range FCD in left ventral striatum (VS.L) for PPD-A patients. The follow-up rsFC analyses further revealed reduced functional connectivity between dorsomedial prefrontal cortex (dmPFC) and VS.L in both PPD and PPD-A. PPD showed specific changes of rsFC between LG.R and dmPFC, right angular gyrus and left precentral gyrus, while PPD-A represented specifically abnormal rsFC between VS.L and left ventrolateral prefrontal cortex. Moreover, the altered FCD and rsFC were closely associated with depression and anxiety symptoms load. Taken together, our study is the first to identify common and disorder-specific neural circuit disruptions in PPD and PPD-A, which may facilitate more effective diagnosis and treatments.
Collapse
Affiliation(s)
- Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu 610041, China.,Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yushan Zhou
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Veronica P Y Kwok
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China
| | - Yuanyuan Li
- Key Laboratory for NeuroInformation of the Ministry of Education, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu 625014, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yajun Zhao
- School of Sociality and Psychology, Southwest Minzu University, Chengdu, China
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|