1
|
Ruocco AC, Marceau EM. Update on the Neurobiology of Borderline Personality Disorder: A Review of Structural, Resting-State and Task-Based Brain Imaging Studies. Curr Psychiatry Rep 2024; 26:807-815. [PMID: 39476273 DOI: 10.1007/s11920-024-01553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE OF REVIEW This review summarizes recent advances in research on the neurobiology of borderline personality disorder (BPD) according to structural brain imaging investigations and resting-state and task-based functional brain activation studies. RECENT FINDINGS Extending established findings on differences in regional brain volumes and cortical thickness between BPD and healthy controls, recent research illuminates shared and distinct brain structural characteristics compared to other psychiatric diagnoses, and uncovers relations of these brain structures with transdiagnostic symptoms and clinical features. Resting-state functional brain imaging studies reveal disruptions among adolescents and adults with BPD in frontolimbic and default-mode networks, which primarily underlie affect regulation and self-referential processes, respectively. Recent task-based functional brain imaging research builds on existing neurobiological understanding of emotion and cognition in BPD by revealing novel intersections with interpersonal- and stress-related processes. Studies of psychological and pharmacological interventions suggest possible effects on neural regions underlying emotion processing and behavioral control. Recent advances in neurobiological research on BPD underscore the pathophysiology of affective, behavioral and self-interpersonal symptoms, with growing interest in adolescents with BPD and the impacts of psychological and biological interventions. Corresponding with the increased prominence of alternative dimensional models of personality disorder in recent years, there is a gradual rise in studies examining the relationships of brain structures and functional brain activation with BPD-relevant symptom dimensions, including within transdiagnostic samples.
Collapse
Affiliation(s)
- Anthony C Ruocco
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada.
- Department of Psychological Clinical Science, University of Toronto, Toronto, ON, Canada.
| | - Ely M Marceau
- School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
2
|
Franczak Ł, Podwalski P, Wysocki P, Dawidowski B, Jędrzejewski A, Jabłoński M, Samochowiec J. Impulsivity in ADHD and Borderline Personality Disorder: A Systematic Review of Gray and White Matter Variations. J Clin Med 2024; 13:6906. [PMID: 39598050 PMCID: PMC11594719 DOI: 10.3390/jcm13226906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction: Impulsivity is one of the overlapping symptoms common to borderline personality disorder (BPD) and attention deficit hyperactivity disorder (ADHD), but the neurobiological basis of these disorders remains uncertain. This systematic review aims to identify abnormalities in the gray and white matter associated with impulsivity in BPD and ADHD. Methods: We conducted a systematic search of the PubMed, Embase, and SCOPUS databases, adhering to PRISMA guidelines. Studies that investigated gray and white matter alterations in BPD or ADHD populations and their relationship with impulsivity were included. We reviewed information from 23 studies involving 992 participants, which included findings from structural MRI and DTI. Results: The review identified various nonhomogeneous changes associated with impulsivity in BPD and ADHD. BPD was mainly associated with abnormalities in the prefrontal cortex (PFC) and limbic areas, which correlated negatively with impulsivity. In contrast, impulsivity associated with ADHD was associated with structural changes in the caudate nucleus and frontal-striatal pathways. Despite the overlapping symptoms of impulsivity, the neurobiological mechanisms appeared to differ between the two disorders. Conclusions: These findings emphasize the distinct neurostructural correlates of impulsivity in BPD and ADHD. While both disorders show impulsivity as one of their main symptoms, the fundamental brain structures associated with this trait are different. BPD is primarily associated with abnormalities in the prefrontal cortex and limbic system, whereas the alterations seen in ADHD tend to focus on the caudate nucleus and frontostriatal pathways. Further research is needed to clarify these differences and their implications for treatment.
Collapse
Affiliation(s)
- Łukasz Franczak
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Patryk Wysocki
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Bartosz Dawidowski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Adam Jędrzejewski
- Independent Clinical Psychology Unit, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland;
| | - Marcin Jabłoński
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (Ł.F.); (P.W.); (B.D.); (M.J.); (J.S.)
| |
Collapse
|
3
|
Cui Z, Meng L, Zhang Q, Lou J, Lin Y, Sun Y. White and Gray Matter Abnormalities in Young Adult Females with Dependent Personality Disorder: A Diffusion-Tensor Imaging and Voxel-Based Morphometry Study. Brain Topogr 2024; 37:102-115. [PMID: 37831323 DOI: 10.1007/s10548-023-01013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
We applied diffusion-tensor imaging (DTI) including measurements of fractional anisotropy (FA), a parameter of neuronal fiber integrity, mean diffusivity (MD), a parameter of brain tissue integrity, as well as voxel-based morphometry (VBM), a measure of gray and white matter volume, to provide a basis to improve our understanding of the neurobiological basis of dependent personality disorder (DPD). DTI was performed on young girls with DPD (N = 17) and young female healthy controls (N = 17). Tract-based spatial statistics (TBSS) were used to examine microstructural characteristics. Gray matter volume differences between the two groups were investigated using voxel-based morphometry (VBM). The Pearson correlation analysis was utilized to examine the relationship between distinct brain areas of white matter and gray matter and the Dy score on the MMPI. The DPD had significantly higher fractional anisotropy (FA) values than the HC group in the right retrolenticular part of the internal capsule, right external capsule, the corpus callosum, right posterior thalamic radiation (include optic radiation), right cerebral peduncle (p < 0.05), which was strongly positively correlated with the Dy score of MMPI. The volume of gray matter in the right postcentral gyrus and left cuneus in DPD was significantly increased (p < 0.05), which was strongly positively correlated with the Dy score of MMPI (r1,2= 0.467,0.353; p1,2 = 0.005,0.04). Our results provide new insights into the changes in the brain structure in DPD, which suggests that alterations in the brain structure might implicate the pathophysiology of DPD. Possible visual and somatosensory association with motor nerve circuits in DPD.
Collapse
Affiliation(s)
- Zhixia Cui
- Weifang Mental Health Center, Weifang, Shandong, China
| | | | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jing Lou
- Beijing Normal University, Beijing, China
| | - Yuan Lin
- First Clinical Department, Dalian Medical University, Dalian, China
| | - Yueji Sun
- Department of Psychiatry and Behavioral Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Langerbeck M, Baggio T, Messina I, Bhat S, Grecucci A. Borderline shades: Morphometric features predict borderline personality traits but not histrionic traits. Neuroimage Clin 2023; 40:103530. [PMID: 37879232 PMCID: PMC10618757 DOI: 10.1016/j.nicl.2023.103530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Borderline personality disorder (BPD) is one of the most diagnosed disorders in clinical settings. Besides the fully diagnosed disorder, borderline personality traits (BPT) are quite common in the general population. Prior studies have investigated the neural correlates of BPD but not of BPT. This paper investigates the neural correlates of BPT in a subclinical population using a supervised machine learning method known as Kernel Ridge Regression (KRR) to build predictive models. Additionally, we want to determine whether the same brain areas involved in BPD are also involved in subclinical BPT. Recent attempts to characterize the specific role of resting state-derived macro networks in BPD have highlighted the role of the default mode network. However, it is not known if this extends to the subclinical population. Finally, we wanted to test the hypothesis that the same circuitry that predicts BPT can also predict histrionic personality traits. Histrionic personality is sometimes considered a milder form of BPD, and making a differential diagnosis between the two may be difficult. For the first time KRR was applied to structural images of 135 individuals to predict BPT, based on the whole brain, on a circuit previously found to correctly classify BPD, and on the five macro-networks. At a whole brain level, results show that frontal and parietal regions, as well as the Heschl's area, the thalamus, the cingulum, and the insula, are able to predict borderline traits. BPT predictions increase when considering only the regions limited to the brain circuit derived from a study on BPD, confirming a certain overlap in brain structure between subclinical and clinical samples. Of all the five macro networks, only the DMN successfully predicts BPD, confirming previous observations on its role in the BPD. Histrionic traits could not be predicted by the BPT circuit. The results have implications for the diagnosis of BPD and a dimensional model of personality.
Collapse
Affiliation(s)
- Miriam Langerbeck
- Faculty of Psychology and Neuroscience (FPN), Maastricht University, Netherlands
| | - Teresa Baggio
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Italy.
| | - Irene Messina
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Italy; Universitas Mercatorum, Rome, Italy.
| | - Salil Bhat
- Department of Cognitive Neuroscience, Faculty of Psychology and Cognitive Neuroscience (FPN), Maastricht University, Netherlands.
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento, Italy; Centre for Medical Sciences (CISMed), University of Trento, Italy.
| |
Collapse
|
5
|
Improving treatment outcomes for borderline personality disorder: what can we learn from biomarker studies of psychotherapy? Curr Opin Psychiatry 2023; 36:67-74. [PMID: 36017562 DOI: 10.1097/yco.0000000000000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Borderline personality disorder (BPD) is a severe and common psychiatric disorder and though evidence-based psychotherapies are effective, rates of treatment nonresponse are as high as 50%. Treatment studies may benefit from interdisciplinary approaches from neuroscience and genetics research that could generate novel insights into treatment mechanisms and tailoring interventions to the individual. RECENT FINDINGS We provide a timely update to the small but growing body of literature investigating neurobiological and epigenetic changes and using biomarkers to predict outcomes from evidence-based psychotherapies for BPD. Using a rapid review methodology, we identified eight new studies, updating our earlier 2018 systematic review. Across all studies, neuroimaging ( n = 18) and genetics studies ( n = 4) provide data from 735 participants diagnosed with BPD (mean sample size across studies = 33.4, range 2-115). SUMMARY We report further evidence for psychotherapy-related alterations of neural activation and connectivity in regions and networks relating to executive control, emotion regulation, and self/interpersonal functioning in BPD. Emerging evidence also shows epigenetic changes following treatment. Future large-scale multisite studies may help to delineate multilevel treatment targets to inform intervention design, selection, and monitoring for the individual patient via integration of knowledge generated through clinical, neuroscience, and genetics research.
Collapse
|
6
|
Geurts DEM, Van den Heuvel TJ, Huys QJM, Verkes RJ, Cools R. Amygdala response predicts clinical symptom reduction in patients with borderline personality disorder: A pilot fMRI study. Front Behav Neurosci 2022; 16:938403. [PMID: 36110290 PMCID: PMC9468714 DOI: 10.3389/fnbeh.2022.938403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Borderline personality disorder (BPD) is a prevalent, devastating, and heterogeneous psychiatric disorder. Treatment success is highly variable within this patient group. A cognitive neuroscientific approach to BPD might contribute to precision psychiatry by identifying neurocognitive factors that predict who will benefit from a specific treatment. Here, we build on observations that BPD is accompanied by the enhanced impact of the aversive effect on behavior and abnormal neural signaling in the amygdala. We assessed whether BPD is accompanied by abnormal aversive regulation of instrumental behavior and associated neural signaling, in a manner that is predictive of symptom reduction after therapy. We tested a clinical sample of 15 female patients with BPD, awaiting dialectical behavior therapy (DBT), and 16 matched healthy controls using fMRI and an aversive Pavlovian-to-instrumental transfer (PIT) task that assesses how instrumental behaviors are influenced by aversive Pavlovian stimuli. Patients were assessed 1 year after the start of DBT to quantify changes in BPD symptom severity. At baseline, behavioral aversive PIT and associated neural signaling did not differ between groups. However, the BOLD signal in the amygdala measured during aversive PIT was associated with symptom reduction at 1-year follow-up: higher PIT-related aversive amygdala signaling before treatment was associated with reduced clinical improvement at follow-up. Thus, within the evaluated group of BPD patients, the BOLD signal in the amygdala before treatment was related to clinical symptom reduction 1 year after the start of treatment. The results suggest that less PIT-related responsiveness of the amygdala increases the chances of treatment success. We note that the relatively small sample size is a limitation of this study and that replication is warranted.
Collapse
Affiliation(s)
- Dirk E. M. Geurts
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
| | - Thom J. Van den Heuvel
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Scelta, Expert Centre for Personality Disorders, GGNet, Nijmegen, Netherlands
| | - Quentin J. M. Huys
- Mental Health Neuroscience Department, Division of Psychiatry and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Institute of Neurology, University College London, London, United Kingdom
| | - Robbert J. Verkes
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
- Kairos Center for Forensic Psychiatry, Pro Persona Mental Health, Nijmegen, Netherlands
| | - Roshan Cools
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Aberrant Structural Connectivity of the Triple Network System in Borderline Personality Disorder Is Associated with Behavioral Dysregulation. J Clin Med 2022; 11:jcm11071757. [PMID: 35407365 PMCID: PMC8999477 DOI: 10.3390/jcm11071757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Core symptoms of Borderline Personality Disorder (BPD) are associated to aberrant connectivity of the triple network system (salience network [SN], default mode network [DMN], executive control network [ECN]). While functional abnormalities are widely reported, structural connectivity (SC) and anatomical changes have not yet been investigated. Here, we explored the triple network’s SC, structure, and its association with BPD clinical features. Methods: A total of 60 BPD and 26 healthy controls (HC) underwent a multidomain neuropsychological and multimodal MRI (diffusion- and T1-weighted imaging) assessment. Metrics (fractional anisotropy [FA], mean diffusivity [MD], cortical thickness) were extracted from SN, DMN, ECN (triple network), and visual network (control network) using established atlases. Multivariate general linear models were conducted to assess group differences in metrics and associations with clinical features. Results: Patients showed increased MD in the anterior SN, dorsal DMN, and right ECN compared to HC. Diffusivity increases were more pronounced in patients with higher behavioral dysregulation, i.e., suicidal attempting, self-harm, and aggressiveness. No differences were detected in network structure. Conclusions: These results indicate that the triple network system is impaired in BPD at the microstructural level. The preferential involvement of anterior and right-lateralized subsystems and their clinical association suggests that these abnormalities could contribute to behavioral dysregulation.
Collapse
|