1
|
Wang Y, Yang L, Shang Y, Huang Y, Ju C, Zheng H, Zhao W, Liu J. Identifying Minimal Hepatic Encephalopathy: A New Perspective from Magnetic Resonance Imaging. J Magn Reson Imaging 2025; 61:11-24. [PMID: 38149764 DOI: 10.1002/jmri.29179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Type C hepatic encephalopathy (HE) is a condition characterized by brain dysfunction caused by liver insufficiency and/or portal-systemic blood shunting, which manifests as a broad spectrum of neurological or psychiatric abnormalities, ranging from minimal HE (MHE), detectable only by neuropsychological or neurophysiological assessment, to coma. Though MHE is the subclinical phase of HE, it is highly prevalent in cirrhotic patients and strongly associated with poor quality of life, high risk of overt HE, and mortality. It is, therefore, critical to identify MHE at the earliest and timely intervene, thereby minimizing the subsequent complications and costs. However, proper and sensitive diagnosis of MHE is hampered by its unnoticeable symptoms and the absence of standard diagnostic criteria. A variety of neuropsychological or neurophysiological tests have been performed to diagnose MHE. However, these tests are nonspecific and susceptible to multiple factors (eg, aging, education), thereby limiting their application in clinical practice. Thus, developing an objective, effective, and noninvasive method is imperative to help detect MHE. Magnetic resonance imaging (MRI), a noninvasive technique which can produce many objective biomarkers by different imaging sequences (eg, Magnetic resonance spectroscopy, DWI, rs-MRI, and arterial spin labeling), has recently shown the ability to screen MHE from NHE (non-HE) patients accurately. As advanced MRI techniques continue to emerge, more minor changes in the brain could be captured, providing new means for early diagnosis and quantitative assessment of MHE. In addition, the advancement of artificial intelligence in medical imaging also presents the potential to mine more effective diagnostic biomarkers and further improves the predictive efficiency of MHE. Taken together, advanced MRI techniques may provide a new perspective for us to identify MHE in the future. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yisong Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Longtao Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Youlan Shang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yijie Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Ju
- Department of Radiology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- Department of Radiology Quality Control Center in Hunan Province, Changsha, China
| |
Collapse
|
2
|
Lin HY, Huang HW, Dong QY, Cai LM, Chen HJ. Functional connectivity disruption of insular subregions in the cirrhotic patients with minimal hepatic encephalopathy. Brain Imaging Behav 2024; 18:730-740. [PMID: 38407737 DOI: 10.1007/s11682-024-00866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 02/27/2024]
Abstract
We investigated abnormal functional connectivity (FC) patterns of insular subregions in patients with minimal hepatic encephalopathy (MHE) and examined their relationships with cognitive dysfunction using resting-state functional magnetic resonance imaging (fMRI). We collected resting-state fMRI data in 54 patients with cirrhosis [20 with MHE and 34 without MHE (NHE)] and 25 healthy controls. After defining six subregions of insula, we mapped whole-brain FC of the insular subregions and identified FC differences through three groups. FC of the insular subregions was correlated against clinical parameters (including venous blood ammonia level, Child-Pugh score, and cognitive score). The discrimination performance between the MHE and NHE groups was evaluated by performing a classification analysis using the FC index. Across three groups, the observed FC differences involved four insular subregions, including the left-ventral anterior insula, left-dorsal anterior insula, right-dorsal anterior insula, and left-posterior insula (P < 0.05 with false discovery rate correction). Moreover, the FC of these four insular subregions progressively attenuated from NHE to MHE. In addition, hypoconnectivity of insular subregions was correlated with the poor neuropsychological performance and the evaluated blood ammonia levels in patients (P < 0.05 with Bonferroni correction). The FC of insular subregions yielded moderate discriminative value between the MHE and NHE groups (AUC = 0.696-0.809). FC disruption of insular subregions is related to worse cognitive performance in MHE. This study extended our understanding about the neurophysiology of MHE and may assist for its diagnosis.
Collapse
Affiliation(s)
- Hong-Yu Lin
- School of Medical Imaging, Fujian Medical University, Fuzhou, 350001, China
| | - Hui-Wei Huang
- School of Medical Imaging, Fujian Medical University, Fuzhou, 350001, China
| | - Qiu-Yi Dong
- School of Medical Imaging, Fujian Medical University, Fuzhou, 350001, China
| | - Li-Min Cai
- School of Medical Imaging, Fujian Medical University, Fuzhou, 350001, China
| | - Hua-Jun Chen
- School of Medical Imaging, Fujian Medical University, Fuzhou, 350001, China.
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
3
|
Chen Z, Cai Y, Xiao L, Wei XE, Liu Y, Lin C, Liu D, Liu H, Rong L. Increased functional connectivity between default mode network and visual network potentially correlates with duration of residual dizziness in patients with benign paroxysmal positional vertigo. Front Neurol 2024; 15:1363869. [PMID: 38500812 PMCID: PMC10944895 DOI: 10.3389/fneur.2024.1363869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Objective To assess changes in static and dynamic functional network connectivity (sFNC and dFNC) and explore their correlations with clinical features in benign paroxysmal positional vertigo (BPPV) patients with residual dizziness (RD) after successful canalith repositioning maneuvers (CRM) using resting-state fMRI. Methods We studied resting-state fMRI data from 39 BPPV patients with RD compared to 38 BPPV patients without RD after successful CRM. Independent component analysis and methods of sliding window and k-means clustering were adopted to investigate the changes in dFNC and sFNC between the two groups. Additionally, temporal features and meta-states were compared between the two groups. Furthermore, the associations between fMRI results and clinical characteristics were analyzed using Pearson's partial correlation analysis. Results Compared with BPPV patients without RD, patients with RD had longer duration of BPPV and higher scores of dizziness handicap inventory (DHI) before successful CRM. BPPV patients with RD displayed no obvious abnormal sFNC compared to patients without RD. In the dFNC analysis, patients with RD showed increased FNC between default mode network (DMN) and visual network (VN) in state 4, the FNC between DMN and VN was positively correlated with the duration of RD. Furthermore, we found increased mean dwell time (MDT) and fractional windows (FW) in state 1 but decreased MDT and FW in state 3 in BPPV patients with RD. The FW of state 1 was positively correlated with DHI score before CRM, the MDT and FW of state 3 were negatively correlated with the duration of BPPV before CRM in patients with RD. Additionally, compared with patients without RD, patients with RD showed decreased number of states and state span. Conclusion The occurrence of RD might be associated with increased FNC between DMN and VN, and the increased FNC between DMN and VN might potentially correlate with the duration of RD symptoms. In addition, we found BPPV patients with RD showed altered global meta-states and temporal features. These findings are helpful for us to better understand the underlying neural mechanisms of RD and potentially contribute to intervention development for BPPV patients with RD.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yaxian Cai
- Department of Neurology, General Hospital of the Yangtze River Shipping, Wuhan, Hubei, China
| | - Lijie Xiao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiu-E Wei
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yueji Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cunxin Lin
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiyan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liangqun Rong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Huang NX, Huang HW, Dong QY, Wen YL, Li D, Li JQ, Chen HJ. Metabolic alterations in the right anterior insula among patients with cirrhosis without overt hepatic encephalopathy: a magnetic resonance spectroscopy study. Front Neurol 2024; 14:1291478. [PMID: 38283679 PMCID: PMC10811796 DOI: 10.3389/fneur.2023.1291478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Purpose We investigated metabolic alterations in the right anterior insula (rAI) in cirrhotic patients and determined its association with patients' cognitive dysfunction. Methods In this study, 31 healthy controls (HCs) and 32 cirrhotic patients without overt hepatic encephalopathy participated. Both blood ammonia level and Child-Pugh score were measured. The psychometric hepatic encephalopathy score (PHES) was used to evaluate cognitive function. 1H-magnetic resonance spectroscopy (MRS) data located in the rAI were recorded on a commercially available 3T magnetic resonance imaging scanner. The ratios of metabolites were measured, including N-acetylaspartate (NAA)/total creatine (tCr), glutamate plus glutamine (Glx)/tCr, myo-inositol (mI)/tCr, and total choline (tCho)/tCr. We adopted the non-parametric Mann-Whitney U-test for intergroup comparison of metabolic ratios. To determine the association between metabolite concentration and clinical parameters, we performed Spearman correlation analyses. Results Patients with cirrhosis performed worse on PHES in comparison with HCs (P < 0.001). Patients with cirrhosis had significantly decreased mI/tCr (0.87 ± 0.07 vs. 0.74 ± 0.19, P = 0.025) and increased Glx/tCr (1.79 ± 0.17 vs. 2.07 ± 0.29, P < 0.001) in the rAI. We did not observe any significant between-group differences in tCho/tCr and NAA/tCr. The blood ammonia level was correlated with Glx/tCr (r = 0.405, P = 0.022) and mI/tCr (r = -0.398, P = 0.024) of the rAI. In addition, PHES was negatively correlated with Glx/tCr of the rAI (r = -0.379, P = 0.033). Conclusion Metabolic disturbance of the rAI, which is associated with ammonia intoxication, might account for the neural substrate of cirrhosis-related cognitive dysfunction to some extent.
Collapse
Affiliation(s)
- Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui-Wei Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiu-Yi Dong
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu-Lin Wen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
5
|
Ji J, Liu YY, Wu GW, Hu YL, Liang CH, Wang XD. Changes in dynamic and static brain fluctuation distinguish minimal hepatic encephalopathy and cirrhosis patients and predict the severity of liver damage. Front Neurosci 2023; 17:1077808. [PMID: 37056312 PMCID: PMC10086246 DOI: 10.3389/fnins.2023.1077808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
PurposeMinimal hepatic encephalopathy (MHE) is characterized by mild neuropsychological and neurophysiological alterations that are not detectable by routine clinical examination. Abnormal brain activity (in terms of the amplitude of low-frequency fluctuation (ALFF) has been observed in MHE patients. However, little is known concerning temporal dynamics of intrinsic brain activity. The present study aimed to investigate the abnormal dynamics of brain activity (dynamic ALFF; dALFF) and static measures [static ALFF; (sALFF)] in MHE patients and to strive for a reliable imaging neuromarkers for distinguishing MHE patients from cirrhosis patients. In addition, the present study also investigated whether intrinsic brain activity predicted the severity of liver damage.MethodsThirty-four cirrhosis patients with MHE, 28 cirrhosis patients without MHE, and 33 age-, sex-, and education-matched healthy controls (HCs) underwent resting-state magnetic resonance imaging (rs-fMRI). dALFF was estimated by combining the ALFF method with the sliding-window method, in which temporal variability was quantized over the whole-scan timepoints and then compared among the three groups. Additionally, dALFF, sALFF and both two features were utilized as classification features in a support vector machine (SVM) to distinguish MHE patients from cirrhosis patients. The severity of liver damage was reflected by the Child–Pugh score. dALFF, sALFF and both two features were used to predict Child–Pugh scores in MHE patients using a general linear model.ResultsCompared with HCs, MHE patients showed significantly increased dALFF in the left inferior occipital gyrus, right middle occipital gyrus, and right insula; increased dALFF was also observed in the right posterior lobe of the cerebellum (CPL) and right thalamus. Compared with HCs, noMHE patients exhibited decreased dALFF in the right precuneus. In contrast, compared with noMHE patients, MHE patients showed increased dALFF in the right precuneus, right superior frontal gyrus, and right superior occipital gyrus. Furthermore, the increased dALFF values in the left precuneus were positively associated with poor digit-symbol test (DST) scores (r = 0.356, p = 0.038); however, dALFF in the right inferior temporal gyrus (ITG) was negatively associated with the number connection test–A (NCT-A) scores (r = -0.784, p = 0.000). A significant positive correlation was found between dALFF in the left inferior occipital gyrus (IOG) and high blood ammonia levels (r = 0.424, p = 0.012). Notably, dALFF values yielded a higher classification accuracy than sALFF values in distinguishing MHE patients from cirrhosis patients. Importantly, the dALFF values predicted the Child–Pugh score (r = 0.140, p = 0.030), whereas sALFF values did not in the current dataset. Combining two features had high accuracy in classification in distinguishing MHE patients from cirrhotic patients and yielded prediction in the severity of liver damage.ConclusionThese findings suggest that combining dALFF and sALFF features is a useful neuromarkers for distinguishing MHE patients from cirrhosis patients and highlights the important role of dALFF feature in predicting the severity of liver damage in MHE.
Collapse
Affiliation(s)
- Jiang Ji
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Yi-yang Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Wei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Yan-Long Hu
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Chang-Hua Liang
- Department of Radiology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
- *Correspondence: Chang-Hua Liang,
| | - Xiao-dong Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China
- Xiao-dong Wang,
| |
Collapse
|
6
|
Przybyszewski EM, Simon TG, Chung RT. Artificial intelligence in cirrhosis complications and acute liver failure. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, AND DEEP LEARNING IN PRECISION MEDICINE IN LIVER DISEASES 2023:179-194. [DOI: 10.1016/b978-0-323-99136-0.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Guo JR, Shi JY, Dong QY, Cao YB, Li D, Chen HJ. Altered dynamic spontaneous neural activity in minimal hepatic encephalopathy. Front Neurol 2022; 13:963551. [PMID: 36061995 PMCID: PMC9439282 DOI: 10.3389/fneur.2022.963551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background and aims: Abnormal regional neural activity has been identified by the analysis of the static amplitude of low-frequency fluctuation (ALFF) in the setting of minimal hepatic encephalopathy (MHE). Brain activity is highly dynamic. This work sought to evaluate the temporal variability of ALFF to reveal MHE-related alterations in the dynamics of spontaneous neural activity. Methods A total of 29 healthy controls and 49 patients with cirrhosis [including 20 patients with MHE and 29 patients without MHE (NHE)] who underwent resting-state functional magnetic resonance imaging and Psychometric Hepatic Encephalopathy Score (PHES) examination were enrolled in this investigation. Utilizing a sliding-window approach, we calculated the dynamic ALFF (dALFF) variability to reflect the temporal dynamics of regional neural activity. An analysis of the correlation between dALFF variability and PHES was performed, and receiver operating characteristic (ROC) curve analysis to determine the potential of the dALFF variability index in identifying MHE was completed. Results The dALFF variability in the bilateral precuneus/posterior cingulate gyrus and left middle frontal gyrus progressively decreased from NHE to MHE group. In cirrhotic patients, the value of dALFF variability in the bilateral precuneus/posterior cingulate gyrus was positively correlated with their neurocognitive performance (r = 0.383 and P = 0.007). The index of dALFF variability in the bilateral precuneus/posterior cingulate gyrus could be used to distinguish NHE and MHE patients, with moderate power (area under the ROC curve = 0.712 and P = 0.012). Conclusion Our findings highlight the existence of aberrant dynamic brain function in MHE, which could underlie the neural basis of cognitive impairments and could be associated with the development of the disease. Analyzing dALFF could facilitate new biomarker identification for MHE.
Collapse
Affiliation(s)
- Jie-Ru Guo
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Yan Shi
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiu-Yi Dong
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yun-Bin Cao
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China
- Dan Li
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Hua-Jun Chen
| |
Collapse
|
8
|
Cai LM, Shi JY, Dong QY, Wei J, Chen HJ. Aberrant stability of brain functional architecture in cirrhotic patients with minimal hepatic encephalopathy. Brain Imaging Behav 2022; 16:2258-2267. [PMID: 35729463 DOI: 10.1007/s11682-022-00696-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 01/22/2024]
Abstract
To investigate the stability changes of brain functional architecture and the relationship between stability change and cognitive impairment in cirrhotic patients. Fifty-one cirrhotic patients (21 with minimal hepatic encephalopathy (MHE) and 30 without MHE (NHE)) and 29 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging and neurocognitive assessment using the Psychometric Hepatic Encephalopathy Score (PHES). Voxel-wise functional connectivity density (FCD) was calculated as the sum of connectivity strength between one voxel and others within the entire brain. The sliding window correlation approach was subsequently utilized to calculate the FCD dynamics over time. Functional stability (FS) is measured as the concordance of dynamic FCD. From HCs to the NHE and MHE groups, a stepwise reduction of FS was found in the right supramarginal gyrus (RSMG), right middle cingulate cortex, left superior frontal gyrus, and bilateral posterior cingulate cortex (BPCC), whereas a progressive increment of FS was observed in the left middle occipital gyrus (LMOG) and right temporal pole (RTP). The mean FS values in RSMG/LMOG/RTP (r = 0.470 and P = 0.001; r = -0.458 and P = 0.001; and r = -0.384 and P = 0.005, respectively) showed a correlation with PHES in cirrhotic patients. The FS index in RSMG/LMOG/BPCC/RTP showed moderate discrimination potential between the NHE and MHE groups. Changes in FS may be linked to neuropathological bias of cognitive impairment in cirrhotic patients and could serve as potential biomarkers for MHE diagnosis and monitoring the progression of hepatic encephalopathy.
Collapse
Affiliation(s)
- Li-Min Cai
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jia-Yan Shi
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Qiu-Yi Dong
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jin Wei
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
9
|
Yang F, Jiang X, Yue F, Wang L, Boecker H, Han Y, Jiang J. Exploring dynamic functional connectivity alterations in the preclinical stage of Alzheimer's disease: an exploratory study from SILCODE. J Neural Eng 2022; 19. [PMID: 35147522 DOI: 10.1088/1741-2552/ac542d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/08/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Exploring functional connectivity (FC) alterations is important for the understanding of underlying neuronal network alterations in subjective cognitive decline (SCD). The objective of this study was to prove that dynamic FC can better reflect the changes of brain function in individuals with SCD compared to static FC, and further to explore the association between FC alterations and amyloid pathology in the preclinical stage of Alzheimer's disease (AD). METHODS 101 normal control (NC) subjects, 97 SCDs, and 55 cognitive impairment (CI) subjects constituted the whole-cohort. Of these, 29 NCs and 52 SCDs with amyloid images were selected as the sub-cohort. First, independent components (ICs) were identified by independent component analysis and static and dynamic FC were calculated by pairwise correlation coefficient between ICs. Second, FC alterations were identified through group comparison, and seed-based dynamic FC analysis was done. Analysis of variance (ANOVA) was used to compare the seed-based dynamic FC maps and measure the group or amyloid effects. Finally, correlation analysis was conducted between the altered dynamic FC and amyloid burden. RESULTS The results showed that 42 ICs were revealed. Significantly altered dynamic FC included those between the salience/ventral attention network, the default mode network, and the visual network. Specifically, the thalamus/caudate (IC 25) drove the hub role in the group differences. In the seed-based dynamic FC analysis, the dynamic FC between the thalamus/caudate and the middle temporal/frontal gyrus was observed to be higher in the SCD and CI groups. Moreover, a higher dynamic FC between the thalamus/caudate and visual cortex was observed in the amyloid positive group. Finally, the altered dynamic FC was associated with the amyloid global standardized uptake value ratio (SUVr). CONCLUSION Our findings suggest SCD-related alterations could be more reflected by dynamic FC than static FC, and the alterations are associated with global SUVr.
Collapse
Affiliation(s)
- Fan Yang
- Shanghai University, Shangda Road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| | - Xueyan Jiang
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Feng Yue
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Luyao Wang
- Shanghai University, Shangda road, Baoshan district, shanghai, Shanghai, 200444, CHINA
| | - Henning Boecker
- University Hospital Bonn, Positron Emission Tomography (PET) Group, Bonn, Germany, Bonn, Nordrhein-Westfalen, 53127, GERMANY
| | - Ying Han
- Hainan University, Meilan District, Haikou City, Hainan Province, Haikou, 570288, CHINA
| | - Jiehui Jiang
- Shanghai University, Shangda road, Baoshan district, Shanghai, Shanghai, 200444, CHINA
| |
Collapse
|
10
|
Artificial Intelligence and Its Application to Minimal Hepatic Encephalopathy Diagnosis. J Pers Med 2021; 11:jpm11111090. [PMID: 34834442 PMCID: PMC8626051 DOI: 10.3390/jpm11111090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a brain dysfunction caused by liver insufficiency and/or portosystemic shunting. HE manifests as a spectrum of neurological or psychiatric abnormalities. Diagnosis of overt HE (OHE) is based on the typical clinical manifestation, but covert HE (CHE) has only very subtle clinical signs and minimal HE (MHE) is detected only by specialized time-consuming psychometric tests, for which there is still no universally accepted gold standard. Significant progress has been made in artificial intelligence and its application to medicine. In this review, we introduce how artificial intelligence has been used to diagnose minimal hepatic encephalopathy thus far, and we discuss its further potential in analyzing speech and handwriting data, which are probably the most accessible data for evaluating the cognitive state of the patient.
Collapse
|
11
|
Li Y, Liu H, Chen K, Wu X, Wu J, Yang Z, Yao L, Wen G, Zhang C, Chen X, Chen X, Tang D, Wang X, Liu J. Pathological Significance and Prognostic Roles of Indirect Bilirubin/Albumin Ratio in Hepatic Encephalopathy. Front Med (Lausanne) 2021; 8:706407. [PMID: 34527681 PMCID: PMC8435674 DOI: 10.3389/fmed.2021.706407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/10/2021] [Indexed: 11/27/2022] Open
Abstract
Background and Aim: Hepatic encephalopathy (HE) is a neurological disease caused by severe liver disease. Early identification of the risk factor is beneficial to the prevention and treatment of HE. Free bilirubin has always been considered to be the culprit of neonatal kernicterus, but there is no research to explore its role in HE. In this study, we aim to study the clinical significance of the indirect bilirubin-albumin ratio in HE. Methods: A retrospective case-control study of 204 patients with liver failure was conducted. Human serum albumin (HSA) or heme oxygenase-1 (HO-1) inhibitor SnPP (Tin protoporphyrin IX dichloride) was injected intraperitoneally into Ugt1−/− mice to establish a treatment model for endogenous hyperbilirubinemia. Results: IBil/albumin ratio (OR = 1.626, 95% CI1.323–2.000, P < 0.001), white blood cell (WBC) (OR = 1.128, 95% CI 1.009–1.262, P = 0.035), ammonia (OR = 1.010, 95% CI 1.001–1.019, P = 0.027), platelet (OR=1.008, 95% CI 1.001–1.016, P = 0.022), Hb (OR = 0.977, 95% CI 0.961–0.994, P = 0.007), and PTA (OR = 0.960, 95% CI 0.933–0.987, P = 0.005) were independent factors of HE. Patients with a history of liver cirrhosis and severe HE (OR = 12.323, 95% CI 3.278–47.076, P < 0.001) were more likely to die during hospitalization. HSA or SnPP treatment improved cerebellum development and reduced apoptosis of cerebellum cells. Conclusion: The IBil/albumin ratio constitutes the most powerful risk factor in the occurrence of HE, and reducing free bilirubin may be a new strategy for HE treatment.
Collapse
Affiliation(s)
- Yanling Li
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huiyuan Liu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Keng Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xueheng Wu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiawen Wu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Yang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Leyi Yao
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Institute of Digestive Disease of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Guanmei Wen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Change Zhang
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Chen
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Lab of Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Institute of Digestive Disease of Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
12
|
Zhang G, Liu X. Investigation of functional brain network reconfiguration during exposure to naturalistic stimuli using graph-theoretical analysis. J Neural Eng 2021; 18. [PMID: 34433142 DOI: 10.1088/1741-2552/ac20e7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/25/2021] [Indexed: 11/12/2022]
Abstract
Objective.One of the most significant features of the human brain is that it can dynamically reconfigure itself to adapt to a changing environment. However, dynamic interaction characteristics of the brain networks in naturalistic scenes remain unclear.Approach.We used open-source functional magnetic resonance imaging (fMRI) data from 15 participants who underwent fMRI scans while watching an audio-visual movie 'Forrest Gump'. The community detection algorithm based on inter-subject functional correlation was used to study the time-varying functional networks only induced by the movie stimuli. The whole brain reconfiguration patterns were quantified by the temporal co-occurrence matrix that describes the probability of two brain regions engage in the same community (or putative functional module) across time and the time-varying brain modularity. Four graph metrics of integration, recruitment, spatio-temporal diversity and within-community normalised centrality were further calculated to summarise the brain network dynamic roles and hub features in their spatio-temporal topology.Main results.Our results suggest that the networks that were involved in attention and audio-visual information processing, such as the visual network, auditory network, and dorsal attention network, were considered to play a role of 'stable loners'. By contrast, 'unstable loner' networks such as the default mode network (DMN) and fronto-parietal network tended to interact more flexibly with the other networks. In addition, global brain network showed significant fluctuations in modularity. The 'stable loner' networks always maintained high functional connectivity (FC) strength while 'unstable loner' networks, especially the DMN, exhibited high intra- and inter-network FC only during a low modularity period. Finally, changes in brain modularity were significantly associated with variations in emotions induced by the movie.Significance.Our findings provide new insight for understanding the dynamic interaction characteristics of functional brain networks during naturalistic stimuli.
Collapse
Affiliation(s)
- Gaoyan Zhang
- Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University, Tianjin, People's Republic of China
| | - Xin Liu
- Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|