1
|
Cho NS, Wang C, Van Dyk K, Sanvito F, Oshima S, Yao J, Lai A, Salamon N, Cloughesy TF, Nghiemphu PL, Ellingson BM. Pseudo-Resting-State Functional MRI Derived from Dynamic Susceptibility Contrast Perfusion MRI Can Predict Cognitive Impairment in Glioma. AJNR Am J Neuroradiol 2024; 45:1552-1561. [PMID: 38719607 PMCID: PMC11448991 DOI: 10.3174/ajnr.a8327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND AND PURPOSE Resting-state functional MRI (rs-fMRI) can be used to estimate functional connectivity (FC) between different brain regions, which may be of value for identifying cognitive impairment in patients with brain tumors. Unfortunately, neither rs-fMRI nor neurocognitive assessments are routinely assessed clinically, mostly due to limitations in examination time and cost. Since DSC perfusion MRI is often used clinically to assess tumor vascularity and similarly uses a gradient-echo-EPI sequence for T2*-sensitivity, we theorized a "pseudo-rs-fMRI" signal could be derived from DSC perfusion to simultaneously quantify FC and perfusion metrics, and these metrics can be used to estimate cognitive impairment in patients with brain tumors. MATERIALS AND METHODS Twenty-four consecutive patients with gliomas were enrolled in a prospective study that included DSC perfusion MRI, resting-sate functional MRI (rs-fMRI), and neurocognitive assessment. Voxelwise modeling of contrast bolus dynamics during DSC acquisition was performed and then subtracted from the original signal to generate a residual "pseudo-rs-fMRI" signal. Following the preprocessing of pseudo-rs-fMRI, full rs-fMRI, and a truncated version of the full rs-fMRI (first 100 timepoints) data, the default mode, motor, and language network maps were generated with atlas-based ROIs, Dice scores were calculated for the resting-state network maps from pseudo-rs-fMRI and truncated rs-fMRI using the full rs-fMRI maps as reference. Seed-to-voxel and ROI-to-ROI analyses were performed to assess FC differences between cognitively impaired and nonimpaired patients. RESULTS Dice scores for the group-level and patient-level (mean±SD) default mode, motor, and language network maps using pseudo-rs-fMRI were 0.905/0.689 ± 0.118 (group/patient), 0.973/0.730 ± 0.124, and 0.935/0.665 ± 0.142, respectively. There was no significant difference in Dice scores between pseudo-rs-fMRI and the truncated rs-fMRI default mode (P = .97) or language networks (P = .30), but there was a difference in motor networks (P = .02). A multiple logistic regression classifier applied to ROI-to-ROI FC networks using pseudo-rs-fMRI could identify cognitively impaired patients (sensitivity = 84.6%, specificity = 63.6%, receiver operating characteristic area under the curve (AUC) = 0.7762 ± 0.0954 (standard error), P = .0221) and performance was not significantly different from full rs-fMRI predictions (AUC = 0.8881 ± 0.0733 (standard error), P = .0013, P = .29 compared with pseudo-rs-fMRI). CONCLUSIONS DSC perfusion MRI-derived pseudo-rs-fMRI data can be used to perform typical rs-fMRI FC analyses that may identify cognitive decline in patients with brain tumors while still simultaneously performing perfusion analyses.
Collapse
Affiliation(s)
- Nicholas S. Cho
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (N.S.C., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
- Medical Scientist Training Program (N.S.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Chencai Wang
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kathleen Van Dyk
- Department of Psychiatry and Biobehavioral Sciences (K.V.D, B.M.E.), David Geffen School of Medicine, Semel Institute, University of California Los Angeles, Los Angeles, California
| | - Francesco Sanvito
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sonoko Oshima
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jingwen Yao
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Albert Lai
- UCLA Neuro-Oncology Program (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Neurology (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Noriko Salamon
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Neurology (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Phioanh L. Nghiemphu
- UCLA Neuro-Oncology Program (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Neurology (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Benjamin M. Ellingson
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (N.S.C., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
- Department of Psychiatry and Biobehavioral Sciences (K.V.D, B.M.E.), David Geffen School of Medicine, Semel Institute, University of California Los Angeles, Los Angeles, California
- Department of Neurosurgery (B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Abu Mhanna HY, Omar AF, Radzi YM, Oglat AA, Akhdar HF, Ewaidat HA, Almahmoud A, Badarneh LA, Malkawi AA, Malkawi A. Systematic Review Between Resting-State fMRI and Task fMRI in Planning for Brain Tumour Surgery. J Multidiscip Healthc 2024; 17:2409-2424. [PMID: 38784380 PMCID: PMC11111578 DOI: 10.2147/jmdh.s470809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
As an alternative to task-based functional magnetic resonance imaging (T-fMRI), resting-state functional magnetic resonance imaging (Rs-fMRI) is suggested for preoperative mapping of patients with brain tumours, with an emphasis on treatment guidance and neurodegeneration prediction. A systematic review was conducted of 18 recent studies involving 1035 patients with brain tumours and Rs-fMRI protocols. This was accomplished by searching the electronic databases PubMed, Scopus, and Web of Science. For clinical benefit, we compared Rs-fMRI to standard T-fMRI and intraoperative direct cortical stimulation (DCS). The results of Rs-fMRI and T-fMRI were compared and their correlation with intraoperative DCS results was examined through a systematic review. Our exhaustive investigation demonstrated that Rs-fMRI is a dependable and sensitive preoperative mapping technique that detects neural networks in the brain with precision and identifies crucial functional regions in agreement with intraoperative DCS. Rs-fMRI comes in handy, especially in situations where T-fMRI proves to be difficult because of patient-specific factors. Additionally, our exhaustive investigation demonstrated that Rs-fMRI is a valuable tool in the preoperative screening and evaluation of brain tumours. Furthermore, its capability to assess brain function, forecast surgical results, and enhance decision-making may render it applicable in the clinical management of brain tumours.
Collapse
Affiliation(s)
| | - Ahmad Fairuz Omar
- School of Physics, Universiti Sains Malaysia (USM), Penang, 11800, Malaysia
| | - Yasmin Md Radzi
- School of Physics, Universiti Sains Malaysia (USM), Penang, 11800, Malaysia
| | - Ammar A Oglat
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hanan Fawaz Akhdar
- Physics Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Haytham Al Ewaidat
- Department of Allied Medical Sciences-Radiologic Technology, Jordan University of Science and Technology (J.U.S.T), Irbid, 22110, Jordan
| | - Abdallah Almahmoud
- Department of Allied Medical Sciences-Radiologic Technology, Jordan University of Science and Technology (J.U.S.T), Irbid, 22110, Jordan
| | - Laith Al Badarneh
- School of Physics, Universiti Sains Malaysia (USM), Penang, 11800, Malaysia
| | | | - Ahmed Malkawi
- Business Department, Al-Zaytoonah University, Amman, 594, Jordan
| |
Collapse
|
3
|
Ladisich B, Rampp S, Trinka E, Weisz N, Schwartz C, Kraus T, Sherif C, Marhold F, Demarchi G. Network topology in brain tumor patients with and without structural epilepsy: a prospective MEG study. Ther Adv Neurol Disord 2023; 16:17562864231190298. [PMID: 37655227 PMCID: PMC10467269 DOI: 10.1177/17562864231190298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Background It was proposed that network topology is altered in brain tumor patients. However, there is no consensus on the pattern of these changes and evidence on potential drivers is lacking. Objectives We aimed to characterize neurooncological patients' network topology by analyzing glial brain tumors (GBTs) and brain metastases (BMs) with respect to the presence of structural epilepsy. Methods Network topology derived from resting state magnetoencephalography was compared between (1) patients and controls, (2) GBTs and BMs, and (3) patients with (PSEs) and without structural epilepsy (PNSEs). Eligible patients were investigated from February 2019 to March 2021. We calculated whole brain (WB) connectivity in six frequency bands, network topological parameters (node degree, average shortest path length, local clustering coefficient) and performed a stratification, where differences in power were identified. For data analysis, we used Fieldtrip, Brain Connectivity MATLAB toolboxes, and in-house built scripts. Results We included 41 patients (21 men), with a mean age of 60.1 years (range 23-82), of those were: GBTs (n = 23), BMs (n = 14), and other histologies (n = 4). Statistical analysis revealed a significantly decreased WB node degree in patients versus controls in every frequency range at the corrected level (p1-30Hz = 0.002, pγ = 0.002, pβ = 0.002, pα = 0.002, pθ = 0.024, and pδ = 0.002). At the descriptive level, we found a significant augmentation for WB local clustering coefficient (p1-30Hz = 0.031, pδ = 0.013) in patients compared to controls, which did not persist the false discovery rate correction. No differences regarding networks of GBTs compared to BMs were identified. However, we found a significant increase in WB local clustering coefficient (pθ = 0.048) and decrease in WB node degree (pα = 0.039) in PSEs versus PNSEs at the uncorrected level. Conclusion Our data suggest that network topology is altered in brain tumor patients. Histology per se might not, however, tumor-related epilepsy seems to influence the brain's functional network. Longitudinal studies and analysis of possible confounders are required to substantiate these findings.
Collapse
Affiliation(s)
- Barbara Ladisich
- Department of Neurosurgery, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
- Department of Neurosurgery, University Hospital St. Poelten, Dunant-Platz 1, St Polten 3100 Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Stefan Rampp
- Department of Neurosurgery, Department of Neuroradiology, University Hospital Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle (Saale), Germany
| | - Eugen Trinka
- Department of Neurology, Center for Cognitive Neuroscience Salzburg, Member of the European Reference Network, EpiCARE, Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute of Neurorehabilitation and Space Neurology, Salzburg, Austria
| | - Nathan Weisz
- Neuroscience Institute, Christian Doppler University Hospital, Salzburg, Austria
- Center for Cognitive Neuroscience & Department of Psychology, Paris Lodron University, Salzburg, Austria
| | - Christoph Schwartz
- Department of Neurosurgery, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Theo Kraus
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Camillo Sherif
- Department of Neurosurgery, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Franz Marhold
- Department of Neurosurgery, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Gianpaolo Demarchi
- Neuroscience Institute, Christian Doppler University Hospital, Salzburg, Austria
- Center for Cognitive Neuroscience & Department of Psychology, Paris Lodron University, Salzburg, Austria
| |
Collapse
|
4
|
Moretto M, Silvestri E, Facchini S, Anglani M, Cecchin D, Corbetta M, Bertoldo A. The dynamic functional connectivity fingerprint of high-grade gliomas. Sci Rep 2023; 13:10389. [PMID: 37369744 DOI: 10.1038/s41598-023-37478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Resting state fMRI has been used in many studies to investigate the impact of brain tumours on functional connectivity (FC). However, these studies have so far assumed that FC is stationary, disregarding the fact that the brain fluctuates over dynamic states. Here we utilised resting state fMRI data from 33 patients with high-grade gliomas and 33 healthy controls to examine the dynamic interplay between resting-state networks and to gain insights into the impact of brain tumours on functional dynamics. By employing Hidden Markov Models, we demonstrated that functional dynamics persist even in the presence of a high-grade glioma, and that patients exhibited a global decrease of connections strength, as well as of network segregation. Furthermore, through a multivariate analysis, we demonstrated that patients' cognitive scores are highly predictive of pathological dynamics, thus supporting our hypothesis that functional dynamics could serve as valuable biomarkers for better understanding the traits of high-grade gliomas.
Collapse
Affiliation(s)
- Manuela Moretto
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy
| | - Erica Silvestri
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy
| | - Silvia Facchini
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Neuroscience, University of Padova, 35121, Padova, Italy
| | | | - Diego Cecchin
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Unit of Nuclear Medicine, University of Padova, 35121, Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy
- Department of Neuroscience, University of Padova, 35121, Padova, Italy
- Venetian Institute of Molecular Medicine, 35131, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, 35131, Padova, Italy.
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy.
| |
Collapse
|
5
|
Fang S, Weng S, Li L, Guo Y, Zhang Z, Fan X, Jiang T, Wang Y. Decreasing distance from tumor to the language network causes language deficit. Hum Brain Mapp 2022; 44:679-690. [PMID: 36169039 PMCID: PMC9842885 DOI: 10.1002/hbm.26092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/25/2023] Open
Abstract
Preoperative language deficits are associated with alterations in the language networks of patients with gliomas. This study investigated how gliomas affect language performance by altering the language network. Ninety patients with lower-grade gliomas were included, and their preoperative language performance was evaluated using the Western Aphasia Battery. We also calculated the topological properties based on resting state functional magnetic resonance imaging. All patients were classified according to aphasia quotient (AQ) into the aphasia (AQ < 93.8), mild anomia (AQ > 93.8 and naming section <9.8), and normal groups (AQ > 93.8). The shortest distance from the tumor to the language network (SDTN) was evaluated to identify the effect on language performance induced by the tumor. One-way analysis of variance and post hoc analysis with Sidak correction were used to analyze the differences in topological properties among the three groups. Causal mediation analysis was used to identify indirectly affected mediators. Compared with the mild anomia group, longer shortest path length (p = .0016), lower vulnerability (p = .0331), and weaker nodal efficiencies of three nodes (right caudal Brodmann area [BA] 45, right caudal BA 22, and left BA 41/42, all p < .05) were observed in the aphasia group. The SDTN mediated nodal degree centrality and nodal vulnerability (left rostroventral BA 39), which negatively affected the AQs. Conventional language eloquent and mirrored areas participated in the language network alterations induced by gliomas. The SDTN was a mediator that affected the preoperative language status in patients with gliomas.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Shimeng Weng
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Lianwang Li
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yuhao Guo
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Zhong Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xing Fan
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain TumorsChinese Academy of Medical SciencesBeijingChina
| | - Yinyan Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Fan L, Li C, Huang ZG, Zhao J, Wu X, Liu T, Li Y, Wang J. The longitudinal neural dynamics changes of whole brain connectome during natural recovery from poststroke aphasia. NEUROIMAGE: CLINICAL 2022; 36:103190. [PMID: 36174256 PMCID: PMC9668607 DOI: 10.1016/j.nicl.2022.103190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Poststroke aphasia is one of the most dramatic functional deficits that results from direct damage of focal brain regions and dysfunction of large-scale brain networks. The reconstruction of language function depends on the hierarchical whole-brain dynamic reorganization. However, investigations into the longitudinal neural changes of large-scale brain networks for poststroke aphasia remain scarce. Here we characterize large-scale brain dynamics in left-frontal-stroke aphasia through energy landscape analysis. Using fMRI during an auditory comprehension task, we find that aphasia patients suffer serious whole-brain dynamics perturbation in the acute and subacute stages after stroke, in which the brains were restricted into two major activity patterns. Following spontaneous recovery process, the brain flexibility improved in the chronic stage. Critically, we demonstrated that the abnormal neural dynamics are correlated with the aberrant brain network coordination. Taken together, the energy landscape analysis exhibited that the acute poststroke aphasia has a constrained, low dimensional brain dynamics, which were replaced by less constrained and high dimensional dynamics at chronic aphasia. Our study provides a new perspective to profoundly understand the pathological mechanisms of poststroke aphasia.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi 710032, PR China
| | - Zi-gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Jie Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, Shaanxi 710049, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| |
Collapse
|
7
|
Silvestri E, Moretto M, Facchini S, Castellaro M, Anglani M, Monai E, D’Avella D, Della Puppa A, Cecchin D, Bertoldo A, Corbetta M. Widespread cortical functional disconnection in gliomas: an individual network mapping approach. Brain Commun 2022; 4:fcac082. [PMID: 35474856 PMCID: PMC9034119 DOI: 10.1093/braincomms/fcac082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Assessment of impaired/preserved cortical regions in brain tumours is typically performed via intraoperative direct brain stimulation of eloquent areas or task-based functional MRI. One main limitation is that they overlook distal brain regions or networks that could be functionally impaired by the tumour.
This study aims: 1) to investigate the impact of brain tumours on the cortical synchronization of brain networks measured with resting-state functional magnetic resonance imaging (resting-state networks) both near the lesion and remotely; 2) to test whether potential changes in resting state networks correlate with cognitive status.
The sample included twenty-four glioma patients (mean age 58.1 ± 16.4y) with different pathological staging. We developed a new method for single subject localization of resting state networks abnormalities. First, we derived the spatial pattern of the main resting state networks by means of the group guided independent component analysis. This was informed by a high-resolution resting state networks template derived from an independent sample of healthy controls. Second, we developed a spatial similarity index to measure differences in network topography and strength between healthy controls and individual brain tumour patients. Next, we investigated the spatial relationship between altered networks and tumour location. Finally, multivariate analyses related cognitive scores across multiple cognitive domains (attention, language, memory, decision making) with patterns of multi-network abnormality.
We found that brain gliomas cause broad alterations of resting state networks topography that occurred mainly in structurally normal regions outside the tumour and oedema region. Cortical regions near the tumour often showed normal synchronization. Finally, multi-network abnormalities predicted attention deficits.
Overall, we present a novel method for the functional localization of resting state networks abnormalities in individual glioma patients. These abnormalities partially explain cognitive disabilities and shall be carefully navigated during surgery.
Collapse
Affiliation(s)
- Erica Silvestri
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | - Manuela Moretto
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | - Silvia Facchini
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | | | - Elena Monai
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Domenico D’Avella
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
| | - Alessandro Della Puppa
- Neurosurgery, Department of NEUROFARBA, University Hospital of Careggi, University of Florence, 50139 Florence, Italy
| | - Diego Cecchin
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
- Department of Medicine, Unit of Nuclear Medicine, University of Padova, 35128 Padova, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| |
Collapse
|
8
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Carai A, Marras CE. Networking of the Human Cerebellum: From Anatomo-Functional Development to Neurosurgical Implications. Front Neurol 2022; 13:806298. [PMID: 35185765 PMCID: PMC8854219 DOI: 10.3389/fneur.2022.806298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, the cerebellum was considered to be substantially involved in sensory-motor coordination. However, a growing number of neuroanatomical, neuroimaging, clinical and lesion studies have now provided converging evidence on the implication of the cerebellum in a variety of cognitive, affective, social, and behavioral processes as well. These findings suggest a complex anatomo-functional organization of the cerebellum, involving a dense network of cortical territories and reciprocal connections with many supra-tentorial association areas. The final architecture of cerebellar networks results from a complex, highly protracted, and continuous development from childhood to adulthood, leading to integration between short-distance connections and long-range extra-cerebellar circuits. In this review, we summarize the current evidence on the anatomo-functional organization of the cerebellar connectome. We will focus on the maturation process of afferent and efferent neuronal circuitry, and the involvement of these networks in different aspects of neurocognitive processing. The final section will be devoted to identifying possible implications of this knowledge in neurosurgical practice, especially in the case of posterior fossa tumor resection, and to discuss reliable strategies to improve the quality of approaches while reducing postsurgical morbidity.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Luca de Palma
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
9
|
What Can Resting-State fMRI Data Analysis Explain about the Functional Brain Connectivity in Glioma Patients? Tomography 2022; 8:267-280. [PMID: 35202187 PMCID: PMC8878995 DOI: 10.3390/tomography8010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Resting-state functional MRI has been increasingly implemented in imaging protocols for the study of functional connectivity in glioma patients as a sequence able to capture the activity of brain networks and to investigate their properties without requiring the patients’ cooperation. The present review aims at describing the most recent results obtained through the analysis of resting-state fMRI data in different contexts of interest for brain gliomas: the identification and localization of functional networks, the characterization of altered functional connectivity, and the evaluation of functional plasticity in relation to the resection of the glioma. An analysis of the literature showed that significant and promising results could be achieved through this technique in all the aspects under investigation. Nevertheless, there is room for improvement, especially in terms of stability and generalizability of the outcomes. Further research should be conducted on homogeneous samples of glioma patients and at fixed time points to reduce the considerable variability in the results obtained across and within studies. Future works should also aim at establishing robust metrics for the assessment of the disruption of functional connectivity and its recovery at the single-subject level.
Collapse
|