1
|
Nanu CC, Coman C, Bularca MC, Mesesan-Schmitz L, Gotea M, Atudorei I, Turcu I, Negrila I. The role of chess in the development of children-parents' perspectives. Front Psychol 2023; 14:1210917. [PMID: 37434882 PMCID: PMC10330813 DOI: 10.3389/fpsyg.2023.1210917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction The study examines the role of chess in the development of children from the perspectives of parents. The research focused on analyzing the parents' perceptions about chess's role in their children's development, on finding out how the perception of parents differs depending on whether they know how to play chess or not, and on outlining the profile of the parents whose children play chess.The study was conducted in Romania. Methods In order to conduct the study, a quantitative research method was used, while having as a research instrument a non-standardized questionnaire. The questionnaire was applied to parents of chess-playing children who are members of chess clubs from Romania. The sample of the study comprises 774 respondents. Results The results of our research showed that parents are of the opinion that chess helps children develop their cognitive abilities, their character and their competitive spirit. Most of the parents focused on highlighting the positive effects of chess on the development of their children. Parents also considered that chess helped their children develop positive emotions and helped them overcome negative emotions. The results revealed differences between the opinions of parents depending on whether they know how to play chess or not. Thus, parents who do know how to play chess were more likely to focus on the positive effects of the game on the development of their children, and those who know how to play chess were also more satisfied with their children's accumulated knowledge following chess lessons. Discussion Findings extend our understanding of how parents perceive the way chess influences the development of their children, it offered us a perspective on the perceived benefits of chess, benefits which should be further analyzed in order to identify under what circumstances chess could be introduced in the school curriculum.
Collapse
Affiliation(s)
- Costica Ciprian Nanu
- Doctoral School of Social and Humanities Sciences, University of Craiova, Craiova, Romania
| | - Claudiu Coman
- Department of Social Sciences and Communication, Transilvania University of Brasov, Brasov, Romania
| | - Maria Cristina Bularca
- Department of Social Sciences and Communication, Transilvania University of Brasov, Brasov, Romania
| | - Luiza Mesesan-Schmitz
- Department of Social Sciences and Communication, Transilvania University of Brasov, Brasov, Romania
| | - Mihaela Gotea
- Department of Social Sciences and Communication, Transilvania University of Brasov, Brasov, Romania
| | - Ioana Atudorei
- Department of Social Sciences and Communication, Transilvania University of Brasov, Brasov, Romania
| | - Ioan Turcu
- Department of Motor Performance, Transilvania University of Brasov, Brasov, Romania
| | - Ion Negrila
- Doctoral School of Social and Humanities Sciences, University of Craiova, Craiova, Romania
| |
Collapse
|
2
|
Dong M, Zhang P, Chai W, Zhang X, Chen BT, Wang H, Wu J, Chen C, Niu Y, Liang J, Shi G, Jin C. Early stage of radiological expertise modulates resting-state local coherence in the inferior temporal lobe. PSYCHORADIOLOGY 2022; 2:199-206. [PMID: 38665273 PMCID: PMC10917200 DOI: 10.1093/psyrad/kkac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 04/28/2024]
Abstract
Background The visual system and its inherent functions undergo experience-dependent changes through the lifespan, enabling acquisition of new skills. Previous fMRI studies using tasks reported increased specialization in a number of cortical regions subserving visual expertise. Although ample studies focused on representation of long-term visual expertise in the brain, i.e. in terms of year, monthly-based early-stage representation of visual expertise remains unstudied. Given that spontaneous neuronal oscillations actively encode previous experience, we propose brain representations in the resting state is fundamentally important. Objective The current study aimed to investigate how monthly-based early-stage visual expertise are represented in the resting state using the expertise model of radiologists. Methods In particular, we investigated the altered local clustering pattern of spontaneous brain activity using regional homogeneity (ReHo). A cohort group of radiology interns (n = 22) after one-month training in X-ray department and matched laypersons (n = 22) were recruited after rigorous behavioral assessment. Results The results showed higher ReHo in the right hippocampus (HIP) and the right ventral anterior temporal lobe (vATL) (corrected by Alphasim correction, P < 0.05). Moreover, ReHo in the right HIP correlated with the number of cases reviewed during intern radiologists' training (corrected by Alphasim correction, P < 0.05). Conclusions In sum, our results demonstrated that the early stage of visual expertise is more concerned with stabilizing visual feature and domain-specific knowledge into long-term memory. The results provided novel evidence regarding how early-stage visual expertise is represented in the resting brain, which help further elaborate how human visual expertise is acquired. We propose that our current study may provide novel ideas for developing new training protocols in medical schools.
Collapse
Affiliation(s)
- Minghao Dong
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an City, Shaanxi 710071, China
- Xian Key Laboratory of Intelligent Sensing and Regulation of tran-Scale Life Information, Xi’an City, Shaanxi 710071, China
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Peiming Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Weilu Chai
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Xiaoyan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Bihong T Chen
- City of Hope Medical Center, Duarte City, California 91010, USA
| | - Hongmei Wang
- Department of Medical Imaging, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an City, Shaanxi 710000, China
| | - Jia Wu
- School of Foreign Languages, Northwestern Polytechnical University, Xi'an City, Shaanxi 710071, China
| | - Chao Chen
- PLA Funding Payment Center, Beijing 100000, China
| | - Yi Niu
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Jimin Liang
- School of Electronics and Engineering, Xidian University, Xi'an City, Shaanxi 710071, China
| | - Guangming Shi
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Chenwang Jin
- Department of Medical Imaging, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an City, Shaanxi 710000, China
| |
Collapse
|
3
|
Su J, Zhang X, Zhang Z, Wang H, Wu J, Shi G, Jin C, Dong M. Real-World Visual Experience Alters Baseline Brain Activity in the Resting State: A Longitudinal Study Using Expertise Model of Radiologists. Front Neurosci 2022; 16:904623. [PMID: 35712457 PMCID: PMC9195622 DOI: 10.3389/fnins.2022.904623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
Visual experience modulates the intensity of evoked brain activity in response to training-related stimuli. Spontaneous fluctuations in the restful brain actively encode previous learning experience. However, few studies have considered how real-world visual experience alters the level of baseline brain activity in the resting state. This study aimed to investigate how short-term real-world visual experience modulates baseline neuronal activity in the resting state using the amplitude of low-frequency (<0.08 Hz) fluctuation (ALFF) and a visual expertise model of radiologists, who possess fine-level visual discrimination skill of homogeneous stimuli. In detail, a group of intern radiologists (n = 32) were recruited. The resting-state fMRI data and the behavioral data regarding their level of visual expertise in radiology and face recognition were collected before and after 1 month of training in the X-ray department in a local hospital. A machine learning analytical method, i.e., support vector machine, was used to identify subtle changes in the level of baseline brain activity. Our method led to a superb classification accuracy of 86.7% between conditions. The brain regions with highest discriminative power were the bilateral cingulate gyrus, the left superior frontal gyrus, the bilateral precentral gyrus, the bilateral superior parietal lobule, and the bilateral precuneus. To the best of our knowledge, this study is the first to investigate baseline neurodynamic alterations in response to real-world visual experience using longitudinal experimental design. These results suggest that real-world visual experience alters the resting-state brain representation in multidimensional neurobehavioral components, which are closely interrelated with high-order cognitive and low-order visual factors, i.e., attention control, working memory, memory, and visual processing. We propose that our findings are likely to help foster new insights into the neural mechanisms of visual expertise.
Collapse
Affiliation(s)
- Jiaxi Su
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Xiaoyan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Ziyuan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Hongmei Wang
- Department of Medical Imaging, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Jia Wu
- School of Foreign Languages, Northwestern Polytechnical University, Xi’an, China
| | - Guangming Shi
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an, China
| | - Chenwang Jin
- Department of Medical Imaging, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, China
| | - Minghao Dong
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Xi’an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an, China
| |
Collapse
|