1
|
Deng X, Zhou S, Hu Z, Gong F, Zhang J, Zhou C, Lan W, Gao X, Huang Y. Nicotinic Acid-Mediated Modulation of Metastasis-Associated Protein 1 Methylation and Inflammation in Brain Arteriovenous Malformation. Biomolecules 2023; 13:1495. [PMID: 37892177 PMCID: PMC10605296 DOI: 10.3390/biom13101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
We explored metastasis-associated protein 1 (MTA1) promoter methylation in the development of brain arteriovenous malformation (BAVM). The clinical data of 148 sex- and age-matched BAVMs and controls were collected, and the MTA1 DNA methylation in peripheral white blood cells (WBC) was assessed by bisulfite pyrosequencing. Among them, 18 pairs of case-control samples were used for WBC mRNA detection, 32 pairs were used for WBC MTA1 protein measurement, and 50 pairs were used for plasma inflammatory factor analysis. Lipopolysaccharide (LPS) treatment was used to induce an inflammatory injury cell model of human brain microvascular endothelial cells (BMECS). 5-Aza-2'-deoxycytidine (5-AZA), nicotinic acid (NA), and MTA1 siRNAs were used in functional experiments to examine BMECS behaviors. RT-qPCR, Western blot, and ELISA or cytometric bead arrays were used to measure the expression levels of MTA1, cytokines, and signaling pathway proteins in human blood or BMECS. The degree of MTA1 promoter methylation was reduced in BAVM compared with the control group and was inversely proportional to MTA1 expression. Plasma ApoA concentrations in BAVM patients were significantly lower than those in controls and correlated positively with MTA1 promoter methylation and negatively with MTA1 expression. The expression of cytokine was markedly higher in BAVM than in controls. Cell experiments showed that 5-AZA decreased the methylation level of MTA1 and increased the expression of MTA1 protein. LPS treatment significantly increased cytokine concentrations (p < 0.05). NA and MTA1 silencing could effectively reverse the LPS-mediated increase in IL-6 and TNF-α expression through the NF-κB pathway. Our study indicated that NA may regulate MTA1 expression by affecting promoter DNA methylation, improve vascular inflammation through the NF-κB pathway, and alleviate the pathological development of BAVM.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315302, China
| | - Fanyong Gong
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Junjun Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Wenting Lan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China;
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China; (X.D.); (S.Z.); (Z.H.); (F.G.); (J.Z.); (C.Z.)
- Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| |
Collapse
|
2
|
Wu Y, Dong X, Hu J, Wang L, Xu R, Wang Y, Zeng Y. Transcriptomics Based Network Analyses and Molecular Docking Highlighted Potentially Therapeutic Biomarkers for Colon Cancer. Biochem Genet 2023:10.1007/s10528-023-10333-9. [PMID: 36645555 DOI: 10.1007/s10528-023-10333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
In this study, machine learning-based multiple bioinformatics analysis was carried out for the purpose of the deep and efficient mining of high-throughput transcriptomics data from the TCGA database. Compared with normal colon tissue, 2469 genes were significantly differentially expressed in colon cancer tissue. Gene functional annotation and pathway analysis suggested that most DEGs were functionally related to the cell cycle and metabolism. Weighted gene co-expression network analysis revealed a significant module and the enriched genes that were closely related to fatty acid degradation and metabolism. Based on colon cancer progression, the trend analysis highlighted that several gene sets were significantly correlated with disease development. At the same time, the most specific genes were functionally related to cancer cell features such as the high performance of DNA replication and cell division. Moreover, survival analysis and target drug prediction were performed to prioritize reliable biomarkers and potential drugs. In consideration of a combination of different evidence, four genes (ACOX1, CPT2, CDC25C and PKMYT1) were suggested as novel biomarkers in colon cancer. The potential biomarkers and target drugs identified in our study may provide new ideas for colonic-related prevention, diagnosis, and treatment; therefore, our results have high clinical value for colon cancer.
Collapse
Affiliation(s)
- Yun Wu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Xiaoping Dong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Jia Hu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lingxiang Wang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Rongfang Xu
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China
| | - Yongjun Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Yong Zeng
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410011, Hunan, China. .,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
3
|
Zhu W, Li G, Guo H, Chen H, Xu X, Long J, Zeng C, Wang X. Clinicopathological Significance of MTA 1 Expression in Patients with Non-Small Cell Lung Cancer: A Meta-Analysis. Asian Pac J Cancer Prev 2017; 18:2903-2909. [PMID: 29172257 PMCID: PMC5773769 DOI: 10.22034/apjcp.2017.18.11.2903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Metastasis associated gene 1(MTA1) is one of the most deregulated molecules in human cancer and leads to cancer progression and metastasis. We performed a meta-analysis to determine the correlations between MTA1 expression and the clinicopathological characteristics of non-small cell lung cancer (NSCLC). Methods: We searched PubMed, Springer, Science Direct, Google Scholar and China National Knowledge Infrastructure (CNKI) for relevant articles. For statistical analyses, we used R3.1.1 software. The fixed or random effects model was employed based on the results of the statistical test for homogeneity. Results: Seven studies involving 660 NSCLC patients were included. The proportion of MTA1 overexpression with 95% confidence interval (95% CI) was 0.53(95% CI: 0.43-0.62) in NSCLC patients; 0.47(95% CI: 0.40-0.55) in age <60 years and 0.52(95% CI: 0.34-0.70) in age ≥60 years; 0.5(95% CI: 0.41-0.62) in males and 0.51(95% CI: 0.39-0.62) in females; 0.59(95% CI: 0.48-0.69) in squamous cell carcinoma (SC) and 0.57(95% CI: 0.46-0.67) in adenocarcinoma (AC); 0.39(95% CI: 0.23-0.56) in well-differentiated tumors, 0.44(95% CI: 0.37-0.51) in moderately differentiated tumors and 0.55(95% CI: 0.37-0.51) in poorly differentiated tumors; 0.48(95% CI: 0.36-0.60) in clinical grade (III-IV) NSCLC and 0.75 (95% CI: 0.69-0.81) in clinical grade (I-II) NSCLC; 0.58(95% CI: 0.45-0.71) in T Stage (T1/T2) NSCLC; 0.68(95% CI: 0.49-0.82) in NSCLC patients with lymph node positivity and 0.51(95% CI: 0.43-0.58) in NSCLC patients with lymph node negativity. Conclusions: These results indicated that MTA1 might be a valuable biomarker in the diagnosis of NSCLC. MTA1 overexpression was significantly associated with age ≥60 years, gender, histopathological type, clinical grade (I-II), T stage (T1/T2) and lymph node positivity in NSCLC patients.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, Guangdong Province, China. ,
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Abu Lila AS, Ishida T. Metronomic chemotherapy and nanocarrier platforms. Cancer Lett 2016; 400:232-242. [PMID: 27838415 DOI: 10.1016/j.canlet.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022]
Abstract
The therapeutic concept of administering chemotherapeutic agents continuously at lower doses, relative to the maximum tolerated dose (MTD) without drug-free breaks over extended periods -known as "metronomic chemotherapy"- is a promising approach for anti-angiogenic cancer therapy. In comparison with MTD chemotherapy regimens, metronomic chemotherapy has demonstrated reduced toxicity. However, as a monotherapy, metronomic chemotherapy has failed to provide convincing results in clinical trials. Therapeutic approaches including combining the anti-angiogenic "metronomic" therapy with conventional radio-/chemo-therapy and/or targeted delivery of chemotherapeutic agents to tumor tissues via their encapsulation with nanocarrier-based platforms have proven to potentiate the overall therapeutic outcomes. In this review, therefore, we focused on the mutual contribution made by nanoscale drug delivery platforms to the therapeutic efficacy of metronomic-based chemotherapy. In addition, the influence that the dosing schedule has on the overall therapeutic efficacy of metronomic chemotherapy is discussed.
Collapse
Affiliation(s)
- Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Medical Biosciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Hail University, Hail 2440, Saudi Arabia
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Medical Biosciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
5
|
Tunçer S, Tunçay Çağatay S, Keşküş AG, Çolakoğlu M, Konu Ö, Banerjee S. Interplay between 15-lipoxygenase-1 and metastasis-associated antigen 1 in the metastatic potential of colorectal cancer. Cell Prolif 2016; 49:448-59. [PMID: 27320813 PMCID: PMC6495825 DOI: 10.1111/cpr.12267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Metastasis-associated antigen 1 (MTA1) is implicated in metastasis while 15-lipoxygenase-1 (15-LOX-1) reduces cell motility, when re-expressed in colorectal cancer (CRC). We aimed to understand any potential interplay between MTA1 and 15-LOX-1 in CRC metastasis. MATERIALS AND METHODS ALOX15 and MTA1 expression in tumour and normal samples were analysed from TCGA RNA-seq data, microarray data sets and a human CRC cDNA array. Western blots, chromatin immunoprecipitation (ChIP), luciferase assays and electrophoretic mobility shift assays (EMSA) were carried out in HT-29 and LoVo cells re-expressing 15-LOX-1 to determine NF- κB activity at the MTA1 promoter. Functional assays in cells ectopically expressing either 15-LOX-1, MTA-1 or both, were carried out to determine adhesion and cell motility. RESULTS Significantly higher expression of MTA1 was observed in tumours compared to normal tissues; MTA1 overexpression resulted in reduced adhesion in CRC cell lines. Re-expression of 15-LOX-1 in the CRC cell lines reduced expression of endogenous MTA1, corroborated by negative correlation between the two genes in two independent human CRC microarray data sets, with greater significance in specific subsets of patients. DNA binding and transcriptional activity of NF-κB at the MTA1 promoter was significantly lower in cells re-expressing 15-LOX-1. Functionally, the same cells had reduced motility, which was rescued when they overexpressed MTA1, and further corroborated by expressions of E-cadherin and vimentin. CONCLUSIONS Expression of MTA1 and 15-LOX-1 negatively correlated in specific subsets of CRC. Mechanistically, this is at least in part through reduced recruitment of NF-κB to the MTA1 promoter.
Collapse
Affiliation(s)
- S Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - S Tunçay Çağatay
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - A G Keşküş
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - M Çolakoğlu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ö Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - S Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|