2
|
Niu G, Jin Z, Zhang C, He D, Gao X, Zou C, Zhang W, Ding J, Das BC, Severinov K, Hitzeroth II, Debata PR, Ma X, Tian X, Gao Q, Wu J, You Z, Tian R, Cui Z, Fan W, Xie W, Huang Z, Cao C, Xu W, Xie H, Xu H, Tang X, Wang Y, Yu Z, Han H, Tan S, Chen S, Hu Z. An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (β-amino ester) nanoparticles for vaginal gene therapy. EBioMedicine 2020; 58:102897. [PMID: 32711250 PMCID: PMC7387785 DOI: 10.1016/j.ebiom.2020.102897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gene therapy has held promises for treating specific genetic diseases. However, the key to clinical application depends on effective gene delivery. METHODS Using a large animal model, we developed two pharmaceutical formulations for gene delivery in the pigs' vagina, which were made up of poly (β-amino ester) (PBAE)-plasmid polyplex nanoparticles (NPs) based two gel materials, modified montmorillonite (mMMT) and hectorite (HTT). FINDINGS By conducting flow cytometry of the cervical cells, we found that PBAE-GFP-NPs-mMMT gel was more efficient than PBAE-GFP-NPs-HTT gel in delivering exogenous DNA intravaginally. Next, we designed specific CRISPR/SpCas9 sgRNAs targeting porcine endogenous retroviruses (PERVs) and evaluated the genome editing efficacy in vivo. We discovered that PERV copy number in vaginal epithelium could be significantly reduced by the local delivery of the PBAE-SpCas9/sgRNA NPs-mMMT gel. Comparable genome editing results were also obtained by high-fidelity version of SpCas9, SpCas9-HF1 and eSpCas9, in the mMMT gel. Further, we confirmed that the expression of topically delivered SpCas9 was limited to the vagina/cervix and did not diffuse to nearby organs, which was relatively safe with low toxicity. INTERPRETATION Our data suggested that the PBAE-NPs mMMT vaginal gel is an effective preparation for local gene therapy, yielding insights into novel therapeutic approaches to sexually transmitted disease in the genital tract. FUNDING This work was supported by the National Science and Technology Major Project of the Ministry of science and technology of China (No. 2018ZX10301402); the National Natural Science Foundation of China (81761148025, 81871473 and 81402158); Guangzhou Science and Technology Programme (No. 201704020093); National Ten Thousand Plan-Young Top Talents of China, Fundamental Research Funds for the Central Universities (17ykzd15 and 19ykyjs07); Three Big Constructions-Supercomputing Application Cultivation Projects sponsored by National Supercomputer Center In Guangzhou; the National Research FFoundation (NRF) South Africa under BRICS Multilateral Joint Call for Proposals; grant 17-54-80078 from the Russian Foundation for Basic Research.
Collapse
Affiliation(s)
- Gang Niu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuang Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chong Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan He
- Department of Neurology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xueqin Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenming Zou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Uttar Pradesh, Noida 201313, India
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143025, Russian Federation
| | - Inga Isabel Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7701, South Africa
| | - Priya Ranjan Debata
- Department of Zoology, North Orissa University, Takatpur, Baripada, Odisha 757003, India
| | - Xin Ma
- Department of Urology, General Hospital of People's Liberation Army, Beijing 100039, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician expert workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Zeshan You
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Tian
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiwen Fan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiling Xie
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Cao
- Department of Obstetrics and Gynecology, Academician expert workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Wei Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongxian Xie
- Generulor Company Bio-X Lab, Guangzhou 510006, Guangdong, China
| | - Hongyan Xu
- Department of Obstetrics and Gynecology, Yuebei People's Hospital, Medical College of Shantou University, Shaoguan 512026, Guangdong, China
| | - Xiongzhi Tang
- Department of Obstetrics and Gynecology, Guilin People's Hospital, Guilin, The Guangxi Zhuang Autonomous Region, 541002, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhiying Yu
- Department of Obstetrics & Gynecology, First Affiliated Hospital of Shenzhen University, Shenzhen 518000, Guangdong, China
| | - Hui Han
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine & Department of Urology, Yat-sen University Cancer Center, Guangzhou 510080, Guangdong Province, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shuqin Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Zheng Hu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|